Выясним вид и расположение графика функции y=-x²+4 относительно начала координат. График - парабола. Поскольку коэффициент перед х² отрицательный, то она располагается ветвями вниз, следовательно большинство её значений отрицательны. Далее, y(-x) = -(-x)²+4 = -x²+4 = y(x), следовательно, функция четная и её график будет симметричен относительно оси Y Чтобы узнать, принимает ли функция неотрицательные значения, приравняем y нулю. Мы получим уравнение -х²+4=0. Если существуют действительные корни этого уравнения, то они будут точками, в которых график функции пересекает ось Х, а при значениях х, находящихся между этими корнями функция будет положительной. -х²+4=0; х²=4 → х=√4 Корнями будут х₁=-2, х₂=2 Итак, график функции - парабола, направленная ветвями вниз, симметричная относительно оси Y и пресекающая ось Х в точках -2 и 2. В силу симметрии этих точек и характера функции мы можем утверждать, что её максимум достигается в точке х = (-2+2)/2 = 0. Значение максимума у(0) равно -0²+4 = 4. Понятно, что функция принимает отрицательные значения вне интервала между корнями, т.е. x<-2 и x>2. В другой форме записи x ∈ (-∞;-2) ∪ x ∈ (2;∞)
(a-1)x²+ax+1=0 1) при а-1=0 а=1 уравнение имеет один корень 1*х+1=0 х+1=0 х=-1 2) при а≠0 (а-1)х²+ах+1=0 при D=0 уравнение имеет один корень D=a²-4(a-1)*1=a²-4a-4=(a-2)² (a-2)²=0 a-2=0 a=2 х= -а/(2(а-1)=-2/(2(2-1)=-2/2*1=-1
ответ: Уравнение имеет один корень при а=-1 и при а=2 . (Этот корень равен -1)
График - парабола. Поскольку коэффициент перед х² отрицательный, то она располагается ветвями вниз, следовательно большинство её значений отрицательны.
Далее, y(-x) = -(-x)²+4 = -x²+4 = y(x), следовательно, функция четная и её график будет симметричен относительно оси Y
Чтобы узнать, принимает ли функция неотрицательные значения, приравняем y нулю. Мы получим уравнение -х²+4=0. Если существуют действительные корни этого уравнения, то они будут точками, в которых график функции пересекает ось Х, а при значениях х, находящихся между этими корнями функция будет положительной.
-х²+4=0; х²=4 → х=√4
Корнями будут х₁=-2, х₂=2
Итак, график функции - парабола, направленная ветвями вниз, симметричная относительно оси Y и пресекающая ось Х в точках -2 и 2.
В силу симметрии этих точек и характера функции мы можем утверждать, что её максимум достигается в точке х = (-2+2)/2 = 0.
Значение максимума у(0) равно -0²+4 = 4.
Понятно, что функция принимает отрицательные значения вне интервала между корнями, т.е. x<-2 и x>2.
В другой форме записи x ∈ (-∞;-2) ∪ x ∈ (2;∞)
График функции дан во вложении.
1) при а-1=0
а=1 уравнение имеет один корень 1*х+1=0
х+1=0
х=-1
2) при а≠0 (а-1)х²+ах+1=0
при D=0 уравнение имеет один корень
D=a²-4(a-1)*1=a²-4a-4=(a-2)²
(a-2)²=0
a-2=0
a=2 х= -а/(2(а-1)=-2/(2(2-1)=-2/2*1=-1
ответ: Уравнение имеет один корень при а=-1 и при а=2 .
(Этот корень равен -1)