В решении.
Объяснение:
Решить уравнения:
1) х² - 10х - 24 = 0
D=b²-4ac = 100 + 96 = 196 √D=14;
х₁=(-b-√D)/2a
х₁=(10-14)/2
х₁= -4/2
х₁= -2;
х₂=(-b+√D)/2a
х₂=(10+14)/2
х₂=24/2
х₂=12;
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
2) 3х² - 7х + 4 = 0
D=b²-4ac = 49 - 48 = 1 √D=1;
х₁=(7-1)/6
х₁= 6/6
х₁= 1;
х₂=(7+1)/6
х₂=8/6
х₂=4/3;
3) 9у² + 6у + 1 = 0
D=b²-4ac = 36 - 36 = 0 √D=0;
у=(-b±√D)/2a
у=(-6±0)/18
у = -6/18
у = -1/3.
Проверка путём подстановки вычисленного значения у в уравнение показала, что данное решение удовлетворяет данному уравнению.
4) 3р² + 2р + 1 = 0
D=b²-4ac = 4 - 12 = -8
D < 0;
Уравнение не имеет действительных корней.
В решении.
Объяснение:
Решить уравнения:
1) х² - 10х - 24 = 0
D=b²-4ac = 100 + 96 = 196 √D=14;
х₁=(-b-√D)/2a
х₁=(10-14)/2
х₁= -4/2
х₁= -2;
х₂=(-b+√D)/2a
х₂=(10+14)/2
х₂=24/2
х₂=12;
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
2) 3х² - 7х + 4 = 0
D=b²-4ac = 49 - 48 = 1 √D=1;
х₁=(-b-√D)/2a
х₁=(7-1)/6
х₁= 6/6
х₁= 1;
х₂=(-b+√D)/2a
х₂=(7+1)/6
х₂=8/6
х₂=4/3;
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
3) 9у² + 6у + 1 = 0
D=b²-4ac = 36 - 36 = 0 √D=0;
у=(-b±√D)/2a
у=(-6±0)/18
у = -6/18
у = -1/3.
Проверка путём подстановки вычисленного значения у в уравнение показала, что данное решение удовлетворяет данному уравнению.
4) 3р² + 2р + 1 = 0
D=b²-4ac = 4 - 12 = -8
D < 0;
Уравнение не имеет действительных корней.
3^(2sinx·tgx)·3^(3tgx)=3^(-1/cosx);
3^(2sinx·tgx+3tgx)=3^(-1/cosx);
2sinx·tgx+3tgx=-1/cosx;
(2sinx·tgx+3tgx)*cosx=-1;
2sinx·tgx*cosx+3tgx*cosx=-1;
Так как tgx=sinx/cosx, получаем
2sin²x+3sinx+1=0;
sinx=t, -1≤t≤1;
2t²+3t+1=0;
D=9-8=1;
t1=(-3-1)/4=-1;
t2=(-3+1)/4=-1/2;
sinx=-1;
x=-π/2+2πn, n∈Z; (1)
или
sinx=-1/2;
x=(-1)^k*arcsin(-1/2)+πk, k∈Z;
x=(-1)^(k+1)*arcsin 1/2+πk, k∈Z;
x=(-1)^(k+1)*π/6+πk, k∈Z. (2)
Проверим ОДЗ:
cosx≠0;
x≠π/2+πn, n∈Z.
Таким образом, корень (1) не подходит.
ответ: (-1)^(k+1)*π/6+πk, k∈Z.