РешениеПусть скорость 2-ого велосипедиста х км/ч, а скорость 1-ого велосипедиста (х+1) км/ч. Тогда время, затраченное первым велосипедистом - 90/(х+1) ч, а время, затраченное вторым велосипедистом - 90/х ч. Составим уравнение: 90/(х+1)+1=90/х (90х + х² + х — 90х + 90)/(х(х+1)) = 0 х² + х - 90 = 0 D = 1 + 4*90 = 361 x₁ = (- 1 + 1 9)/2 = 9 x₂ = (- 1 - 19)/2 = - 10 — не удовлетворяет условию задачи. 9 км/ ч - скорость 2-ого велосипедиста 1) 9 + 1 = 10 км/ч - скорость 1-ого велосипедиста ответ: 10 км/ч; 9 км/ч.
перенесем оба числа в левую стронуи приравняем 0, т.к. это нам даст определение области значений между этими числами
35х^4-6х^8=0
выделим х^4
х^4(35-6х^4)=0
выражение равно0 только когда хотя бы один из множителей равен 0
либо х^4=0
х=0
либо 35-6х^4=0
35=6х^4
х^4=35/6
расставим знаки +/- на графике. если значение принимает положительное зачение, то 35х^4>6х^8, иначе наоборот
ответ
35х^4<6х^8 при
35х^4=6х^8 при
35х^4>6х^8 при
но меньше 0
35х^4=6х^8 при х=0
х>0 но меньше
Решение
Пусть скорость 2-ого велосипедиста х км/ч,
а скорость 1-ого велосипедиста (х+1) км/ч.
Тогда время, затраченное первым велосипедистом - 90/(х+1) ч,
а время, затраченное вторым велосипедистом - 90/х ч.
Составим уравнение:
90/(х+1)+1=90/х
(90х + х² + х — 90х + 90)/(х(х+1)) = 0
х² + х - 90 = 0
D = 1 + 4*90 = 361
x₁ = (- 1 + 1 9)/2 = 9
x₂ = (- 1 - 19)/2 = - 10 — не удовлетворяет условию задачи.
9 км/ ч - скорость 2-ого велосипедиста
1) 9 + 1 = 10 км/ч - скорость 1-ого велосипедиста
ответ: 10 км/ч; 9 км/ч.
перенесем оба числа в левую стронуи приравняем 0, т.к. это нам даст определение области значений между этими числами
35х^4-6х^8=0
выделим х^4
х^4(35-6х^4)=0
выражение равно0 только когда хотя бы один из множителей равен 0
либо х^4=0
х=0
либо 35-6х^4=0
35=6х^4
х^4=35/6
расставим знаки +/- на графике. если значение принимает положительное зачение, то 35х^4>6х^8, иначе наоборот
ответ
35х^4<6х^8 при
35х^4=6х^8 при
35х^4>6х^8 при
но меньше 0
35х^4=6х^8 при х=0
35х^4>6х^8 при
х>0 но меньше
35х^4=6х^8 при
35х^4<6х^8 при