Объяснение:
Подставим координаты точки в каждое уравнение системы . Если получим верные числовые равенства, то данная пара является решением системы .
(-3;2) 4*(-3) -5*2 =12;
-12-10=12;
-22≠ 12
Подставлять во второе уравнение не имеет смысла
(-3;2) - не является решением системы.
(3; -2) 4*3-5*(-2)=12
12+10=12
22≠12
(3;-2) - не является решением системы.
(3;2) 4*3-5*2=12
12-10=12
2≠12
(3;2) - не является решением системы.
ответ: ни одна из данных пар чисел не является решением системы
Решим систему:
- решение данной системы. Значит ни одна из пар чисел не является решением системы.
Объяснение:
Подставим координаты точки в каждое уравнение системы . Если получим верные числовые равенства, то данная пара является решением системы .
(-3;2) 4*(-3) -5*2 =12;
-12-10=12;
-22≠ 12
Подставлять во второе уравнение не имеет смысла
(-3;2) - не является решением системы.
(3; -2) 4*3-5*(-2)=12
12+10=12
22≠12
(3;-2) - не является решением системы.
(3;2) 4*3-5*2=12
12-10=12
2≠12
(3;2) - не является решением системы.
ответ: ни одна из данных пар чисел не является решением системы
Решим систему:
- решение данной системы. Значит ни одна из пар чисел не является решением системы.
2) cos²β + cos²(α - β) - 2cosα·cosβ·cos(α - β) = cos²β + cos(α - β)·(cos(α - β) - 2cosα·cosβ) = cos²β + cos(α - β)·(cosα·cosβ + sinα·sinβ - 2cosα·cosβ) = cos²β + (cosα·cosβ + sinα·sinβ)·(sinα·sinβ - cosα·cosβ) = cos²β + sin²α·sin²β - cos²α·cos²β = cos²β·(1 - cos²α) + sin²α·sin²β = cos²β·sin²α + sin²α·sin²β = sin²α·(sin²β + cos²β) = sin²α