Решение Графиком функции является парабола, ветви которой направлены вверх. 1) D (f) =R , т.к. f – многочлен. 2) f(-х) = (-х)2 - 4(-х) - 5 = х2 + 4х – 5 Функция поменяла знак частично, значит, f не является ни чётной, ни нечётной. 3) Нули функции: При х = 0 у = - 5; (0;-5) при у = 0 х2 - 4х – 5 = 0 По теореме, обратной теореме Виета х1 = -1; х2 = 5 (-1;0); (5;0). 4) Найдём производную функции f: f ′(х) = 2х – 4 Найдём критические точки: f ′(х) = 0; 2х – 4 = 0; х = 2 – критическая точка f ′(х) - + f (х) 2 х min 5) Найдём промежутки монотонности: Если функция возрастает, то f ′(х) > 0 ; 2х – 4 > 0; х > 2. Значит, на промежутке (2; ∞) функция возрастает. Если функция убывает, то f ′(х) < 0; 2х – 4 < 0; х < 2. Значит, на промежутке (- ∞; 2) функция убывает. 6) Найдём координаты вершины параболы: Х =Y = 22 - 4*2 – 5 = -9 (2;-9) – координаты вершины параболы. 7) Область изменения функции Е (у) = (-9; ∞) 8) Построим график функции: у -1 2 5 -5 х
Пусть Х - скорость течения реки. Тогда скорость лодки по течению: (11+Х)км/час, против течения: (11-Х)км/час. Время лодки по течению: 96/(11+Х), против течения 96(11-Х); По условию 96/(11-Х) - 96(11+Х) = 10. Умножим все члены уравнения на общий знаменатель (11+Х)(11-Х) и сократим его. Получим: 96·11 + 96Х - 96·11 +95Х = 10(11+Х)(11-Х); 2·96Х = 10·121 - 10Х²; Для удобства сократим на 2 и решим полученное квадратное уравнение: 5Х² + 96Х - 5·121 = 0; Х₁ = (-96+√(96²+100·121)):10 = (-96 + √21316):10 = (-96 + 146):10 = 5(км/час) (Это сильное течение!) Отрицательный Х₂ не рассматриваем. Скорость течения равна 5км/час. Проверка: 96км:(11-5)км/час - 96:(11+6)км/час= 16час-6час=10час, что соответствует условию
Графиком функции является парабола, ветви которой направлены вверх. 1) D (f) =R , т.к. f – многочлен. 2) f(-х) = (-х)2 - 4(-х) - 5 = х2 + 4х – 5 Функция поменяла знак частично, значит, f не является ни чётной, ни нечётной. 3) Нули функции: При х = 0 у = - 5; (0;-5) при у = 0 х2 - 4х – 5 = 0 По теореме, обратной теореме Виета х1 = -1; х2 = 5 (-1;0); (5;0). 4) Найдём производную функции f: f ′(х) = 2х – 4 Найдём критические точки: f ′(х) = 0; 2х – 4 = 0; х = 2 – критическая точка
f ′(х) - + f (х) 2 х
min 5) Найдём промежутки монотонности: Если функция возрастает, то f ′(х) > 0 ; 2х – 4 > 0; х > 2. Значит, на промежутке (2; ∞) функция возрастает. Если функция убывает, то f ′(х) < 0; 2х – 4 < 0; х < 2. Значит, на промежутке (- ∞; 2) функция убывает. 6) Найдём координаты вершины параболы: Х =Y = 22 - 4*2 – 5 = -9 (2;-9) – координаты вершины параболы.
7) Область изменения функции Е (у) = (-9; ∞) 8) Построим график функции:
у
-1 2 5 -5 х
Время лодки по течению: 96/(11+Х), против течения 96(11-Х);
По условию 96/(11-Х) - 96(11+Х) = 10.
Умножим все члены уравнения на общий знаменатель (11+Х)(11-Х) и сократим его. Получим:
96·11 + 96Х - 96·11 +95Х = 10(11+Х)(11-Х);
2·96Х = 10·121 - 10Х²; Для удобства сократим на 2 и решим полученное квадратное уравнение:
5Х² + 96Х - 5·121 = 0;
Х₁ = (-96+√(96²+100·121)):10 = (-96 + √21316):10 = (-96 + 146):10 = 5(км/час) (Это сильное течение!)
Отрицательный Х₂ не рассматриваем.
Скорость течения равна 5км/час.
Проверка: 96км:(11-5)км/час - 96:(11+6)км/час= 16час-6час=10час, что соответствует условию