eˣ - не может равняться нулю, так как функция вида у=аˣ всегда больше нуля.
теперь воспользуемся методом интервалов - + --------------ln4.5----------------------->
Раз функция меняет знак с минуса на плюс, значит x=ln4.5 - точка минимума. e≈2.7 ⇒ дан промежуток [1;3] убедимся, что ln4.5 принадлежит данному промежутку: 1=lne 3=3*1=3lne=lne³ e³≈2.7³=19.683 lne<ln4.5<lne³ - зная, что е>1, знак неравенства сохраняется
e<4.5<e³ - равенство выполняется, значит, действительно ln4.5 принадлежит данному промежутку.
cos3x=-2cosx
4cos³x-3cosx+2cosx=0
4cos³x-cosx=0
cosx(4cos²x-1)=0
cosx=0⇒x=π/2+πn,n∈z
4cos²x-1=0
4(1+cos2x)/2=1
1+cos2x=1/2
cos2x=-1/2
2x=+-2π/3+2πk
x=+-π/3+πk,k∈z
2
cosx-cos(π/2-11x)=0
-2sin(6x-π/4)sin(-5x+π/4)=0
2sin(6x-π/4)sin(5x-π/4)=0
sin(6x-π/4)=0
6x-π/4=πn
6x=π/4+πn
x=π/24+πn/6,n∈z
sin(5x-π/4)=0
5x-π/4=πk
5x=π/4+πk
x=π/20+πk/5,k∈z
3
(sinx+sin7x)+(cos3x-cos5x)=0
2sin4xcos3x+2sin4xsinx=0
2sin4x*(cos3x+sinx)=0
sin4x=0
4x=πn
x=πn/4
cos3x+cos(π/2-x)=0
2cos(x+π/4)cos(2x-π/4)=0
cos(x+π/4)=0
x+π/4=π/2+πk
x=π/4+πk,k∈z
cos(2x-π/4)=0
2x-π/4=π/2+πm
2x=3π/4+πm
x=3π/8+πm/2,m∈z
Находим нули производной:
eˣ=0 или 2eˣ-9=0
eˣ - не может равняться нулю, так как функция вида у=аˣ всегда больше нуля.
теперь воспользуемся методом интервалов
- +
--------------ln4.5----------------------->
Раз функция меняет знак с минуса на плюс, значит x=ln4.5 - точка минимума.
e≈2.7 ⇒
дан промежуток [1;3]
убедимся, что ln4.5 принадлежит данному промежутку:
1=lne
3=3*1=3lne=lne³
e³≈2.7³=19.683
lne<ln4.5<lne³ - зная, что е>1, знак неравенства сохраняется
e<4.5<e³ - равенство выполняется, значит, действительно ln4.5 принадлежит данному промежутку.
x=1, y(1)=e² -9e -2≈2.7²-9*2.7-2=-19.01
x=3, y(3)=e⁶-9e³-2≈208