Решение Пусть х км/ч - скорость второго пешехода. Тогда скорость первого - (х+1) км/ч. Так как встретились пешеходы в 9 км от пункта А, путь первого составил 9 км, а путь второго - 10 км. Значит, второй пешеход провел в пути (10/х) часов, а первый (9/(х+1)+0,5) часов, полчаса из которых потратил на остановку. Составим равнение: 10/x = 9/(x + 1) + 1/2 10/x = (18 + x + 1)/([2*(x + 1)] 20x + 20 = 18x + x² + x x² – x – 20 = 0 x₁ = - 4 не удовлетворяет условию задачи x₂ = 5 5 (км/ч) - скорость второго пешехода 1) 5 + 1 = 6 (км/ч) - скорость первого пешехода ответ: 6 км/ч ; 5 км/ч.
3(5+2у)+8у=1 5х-у=10 сложим эти уравнения
15+6у+8у=1 8х = 24
14у=-14 х=24/8=3
у=-1, у=14-3*3=14-9=5
х=5-2=3,
ответ:(3;-1) ответ: (3; 5)
3) х=7-4у 4) 2х-3у=5 |*2 , умножим ур-ние на 2
7-4у-2у=-5 3х+2у=14 |*3, умножим на 3 уравнение
6у=12 4x-6y=10 и выполним сложение
у=2 9x+6y=42 этих ур. и получим
х=7-8=-1 13x=52, x=4,
ответ: (-1; 2) 12+2y=14
2y=2, y=1
ответ: (4; 1)
Пусть х км/ч - скорость второго пешехода.
Тогда скорость первого - (х+1) км/ч.
Так как встретились пешеходы в 9 км от пункта А,
путь первого составил 9 км, а путь второго - 10 км.
Значит, второй пешеход провел в пути (10/х) часов,
а первый (9/(х+1)+0,5) часов, полчаса из которых потратил на остановку.
Составим равнение:
10/x = 9/(x + 1) + 1/2
10/x = (18 + x + 1)/([2*(x + 1)]
20x + 20 = 18x + x² + x
x² – x – 20 = 0
x₁ = - 4 не удовлетворяет условию задачи
x₂ = 5
5 (км/ч) - скорость второго пешехода
1) 5 + 1 = 6 (км/ч) - скорость первого пешехода
ответ: 6 км/ч ; 5 км/ч.