[3]
6. результаты письменного экзамена по (максимальный – 10)
представлены полигоном абсолютных частот. проанализируйте информацию и найдите:
а) объем выборки;
b) , полученный большим
количеством учеников
с) процент учащихся, имеющих
высокий результат, если
считать, что 8,9,10 – это
высокий результат,
нео о
р и
м у но
o
1
2
3
4
5
6
7
8
9
10
[4]
7. график функции, заданной уравнением у = (a+1)х +a-1 пересекает ось абсцисс в
точке с координатами (-2; 0).
а) найдите значение а;
h) папишите
нуию ввипе 1 — кү +h:
Путь = S
Скорость = x - y
Время = 4
По течению катер:
Путь= S
Скорость = x + y
Время = 3
По течению плот
Путь = S
Скорость = y
Время = ?
Выражаем x через y, приравнивая пути в пункте 1 и 2:
4(x - y) = 3(x + y)
4x - 4y = 3x + 3y
x = 7y
Формируем таблицу второй раз:
Против течения катер:
Путь = S
Скорость = 6y
Время = 4
По течению катер:
Путь = S
Скорость = 8y
Время = 3
По течению плот:
Путь = S
Скорость = y
Время = S/y
В пункте 3 в формуле Время подставляем вместо S любое выражение из первых двух пунктов. Например, из первого:
Время = S/y = 4*6y/y = 24
Based on two different cases:
x
=
π
6
,
5
π
6
or
3
π
2
Look below for the explanation of these two cases.
Explanation:
Since,
cos
x
+
sin
2
x
=
1
we have:
cos
2
x
=
1
−
sin
2
x
So we can replace
cos
2
x
in the equation
1
+
sin
x
=
2
cos
2
x
by
(
1
−
sin
2
x
)
⇒
2
(
1
−
sin
2
x
)
=
sin
x
+
1
or,
2
−
2
sin
2
x
=
sin
x
+
1
or,
0
=
2
sin
2
x
+
sin
x
+
1
−
2
or,
2
sin
2
x
+
sin
x
−
1
=
0
using the quadratic formula:
x
=
−
b
±
√
b
2
−
4
a
c
2
a
for quadratic equation
a
x
2
+
b
x
+
c
=
0
we have:
sin
x
=
−
1
±
√
1
2
−
4
⋅
2
⋅
(
−
1
)
2
⋅
2
or,
sin
x
=
−
1
±
√
1
+
8
4
or,
sin
x
=
−
1
±
√
9
4
or,
sin
x
=
−
1
±
3
4
or,
sin
x
=
−
1
+
3
4
,
−
1
−
3
4
or,
sin
x
=
1
2
,
−
1
Case I:
sin
x
=
1
2
for the condition:
0
≤
x
≤
2
π
we have:
x
=
π
6
or
5
π
6
to get positive value of
sin
x
Case II:
sin
x
=
−
1
we have:
x
=
3
π
2
to get negative value of
sin
x
Answer link
Объяснение: