3.78. Напишите линейную функцию, график которой перпендикула I графику функции y = — - 0,5х + 4 и свободный член которой равен: 1) -4; 2) 3; 3)-1; 4) 5. бую функцию, график которой перпендик оно TT
Я так думаю, здесь всё объединено?! Короче, попробуем решить алгебраическим это когда первый пример + второй пример). Для этого, умножим первый пример на -1 {y - x = 9 |*(-1) {7y - x = - 3 Получаем: { -у +х = -9 { 7у - х = -3 Условно ставим между этими примерами знак "+", крч прибавляем. Т.к. значения х (иксов) противоположные - они само-уничтожаются. Выходит: 6у = -12 у = -12 : 6 у = -2 Ура! Нашли значение у (игрика), теперь просто подставляешь это значение в любой пример и находишь х (икс). Например, в первый пример: {у - х = 9 {у = -2 -2 - х = 9 -х = 9+2 {х = -11 {у= -2 ответ: (-11; - 2) P.S. пыталась максимально доступно объяснить.
Короче, попробуем решить алгебраическим это когда первый пример + второй пример). Для этого, умножим первый пример на -1
{y - x = 9 |*(-1)
{7y - x = - 3
Получаем:
{ -у +х = -9
{ 7у - х = -3
Условно ставим между этими примерами знак "+", крч прибавляем. Т.к.
значения х (иксов) противоположные - они само-уничтожаются. Выходит:
6у = -12
у = -12 : 6
у = -2
Ура! Нашли значение у (игрика), теперь просто подставляешь это значение в любой пример и находишь х (икс). Например, в первый пример:
{у - х = 9
{у = -2
-2 - х = 9
-х = 9+2
{х = -11
{у= -2
ответ: (-11; - 2)
P.S. пыталась максимально доступно объяснить.
2x² + 7x - 4 = 0
Это квадратное уравнение решения много, самый частый -- через дискриминант (D).
Квадратное уравнение в общем виде выглядит так:
где a, b, c -- коэффициенты, a ≠ 0
Формула дискриминанта:
Формула корней:
При этом от дискриминанта зависит количество корней в уравнении:
Если D > 0, то уравнение имеет 2 корня
Если D = 0, то уравнение имеет 1 корень
Если D < 0, то уравнение не имеет корней
Теперь решение:
2x² + 7x - 4 = 0
В нём a = 2, b = 7, c = -4. Подставим эти значения в формулу дискриминанта:
D > 0, значит уравнение имеет 2 корня.
Найдём корень из дискриминанта и корни уравнения: