3. моторная лодка 10 км по течению реки и 12 км против течения реки и отправила 2 ч на весь путь. Если скорость течения реки равна 3 км/ч, то чему равна скорость моторной лодки?
Решение: Для решения данной задачи введем переменную "Х", через которую обозначим искомую нами скорость моторной лодки. Тогда, по условию задачи, составим следующее уравнение: 10/(Х + 3) + 12/(Х - 3) = 2. Решая данное уравнение, получаем следующее 10 (Х - 3) + 12 (Х + 3) = 2 (Х + 3)(Х - 3) или 10Х - 30 + 12Х + 36 = 2 (Х^2 - 9). В результате сокращений, получаем квадратное уравнение Х^2 -11Х - 12 = 0. Решая квадратное уравнение, получаем два корня -1 и 12. Так как скорость не может быть величиной отрицательной, то скорость моторной лодки будет равна 12 км/ч.
Решение: Для решения данной задачи введем переменную "Х", через которую обозначим искомую нами скорость моторной лодки. Тогда, по условию задачи, составим следующее уравнение: 10/(Х + 3) + 12/(Х - 3) = 2. Решая данное уравнение, получаем следующее 10 (Х - 3) + 12 (Х + 3) = 2 (Х + 3)(Х - 3) или 10Х - 30 + 12Х + 36 = 2 (Х^2 - 9). В результате сокращений, получаем квадратное уравнение Х^2 -11Х - 12 = 0. Решая квадратное уравнение, получаем два корня -1 и 12. Так как скорость не может быть величиной отрицательной, то скорость моторной лодки будет равна 12 км/ч.