Любое шестицифровое число , не содержащее в записи 0 можно превратить в шестицифровое число с одинаковыми цифрами (111 111, либо 222 222, либо... либо 999 999)
если предположить что ни одна из уникальных 9-ти возможных цифр не повторится больше 5 раз, то мы можем составить число не более чем 9*5=45 -ти цифровое, а значит хотя бы одна цифра точно будет в записи числа повторятся шесть и более раз
итого, берем выбираем любую цифру которая встречается шесть или более раз, зачеркиваем остальные цифры и повторы выбранной цифры, чтоб осталось ровно 6 вхождений выбранной цифры. доказано
Так как всего учебников 6, их них 4 в переплете (то есть всего 2 учебника без переплета), то при выборе 4 учебников как минимум 2 из них будут в переплете. Следовательно, менее 2 учебников в переплете выбрать невозможно.
Найдем вероятность появления 2 учебников в переплете среди взятых: - благоприятные исходы: произведение числа выбрать 2 учебника с переплетом из 4 и числа выбрать 2 учебника без переплета из 2: - все возможные исходы: число выбрать 2 учебника из 6 Каждый выбор считаем сочетанием, так как порядок выбор не важен. Вероятность рассчитываем как отношение числа благоприятных исходов к общему числу всех возможных исходов:
Вероятность появления 3 учебников в переплете среди взятых: - благоприятные исходы: произведение числа выбрать 3 учебника с переплетом из 4 и числа выбрать 1 учебник без переплета из 2: - все возможные исходы: число выбрать 3 учебника из 6
Вероятность появления 4 учебников в переплете среди взятых: - благоприятные исходы: произведение числа выбрать 4 учебника с переплетом из 4 и числа выбрать 0 учебников без переплета из 2: - все возможные исходы: число выбрать 4 учебника из 6
Очевидно, что выбрать 5 и более учебников с переплетом невозможно.
если предположить что ни одна из уникальных 9-ти возможных цифр не повторится больше 5 раз, то мы можем составить число не более чем 9*5=45 -ти цифровое, а значит хотя бы одна цифра точно будет в записи числа повторятся шесть и более раз
итого, берем выбираем любую цифру которая встречается шесть или более раз, зачеркиваем остальные цифры и повторы выбранной цифры, чтоб осталось ровно 6 вхождений выбранной цифры.
доказано
Найдем вероятность появления 2 учебников в переплете среди взятых:
- благоприятные исходы: произведение числа выбрать 2 учебника с переплетом из 4 и числа выбрать 2 учебника без переплета из 2:
- все возможные исходы: число выбрать 2 учебника из 6
Каждый выбор считаем сочетанием, так как порядок выбор не важен. Вероятность рассчитываем как отношение числа благоприятных исходов к общему числу всех возможных исходов:
Вероятность появления 3 учебников в переплете среди взятых: - благоприятные исходы: произведение числа выбрать 3 учебника с переплетом из 4 и числа выбрать 1 учебник без переплета из 2: - все возможные исходы: число выбрать 3 учебника из 6
Вероятность появления 4 учебников в переплете среди взятых: - благоприятные исходы: произведение числа выбрать 4 учебника с переплетом из 4 и числа выбрать 0 учебников без переплета из 2: - все возможные исходы: число выбрать 4 учебника из 6
Очевидно, что выбрать 5 и более учебников с переплетом невозможно.
Закон распределения имеет вид: