6х^2-3x =0 вынесем общий множитель за скобки: 1) 3x(2x-1)=0 произведение двух множителей равно 0, если один из них или оба равны 0: 3х=0 или 2х-1=0 первый корень х=0 2х-1=0 2х=1 х=1/2 - второй корень. 2)25х^2=1 x^2=1/25 x=+- 5 3)4x^2+7x-2=0 вычислим дискриминант D=b^2-4ac D=49+32=81 x=(-7+-9)/8 x первое =-2, х второе х=2/8=1/4 4)4x^2+20x+1=0 D=400-16=384 x=(-20+-VD):8 V - обозначение квадратного корня 5) 3x^2 + 2x + 1 =0 D=4-12=-8<0 уравнение решений не имеет, т.к дискриминант отрицательный 6) х^2 + 2,5x -3=0 D= 2,5^2-4*1*(-3)=18,25 x=( -2,5+- VD):2 7) x^4 -13x^2 +36=0 введем обозначение x^2= t, получим новое уравнение t^2 -13t +36=0 D= 169+144=313 К сожалению, корень квадратный из дискриминанта не извлекается. Надо проверить правильность условия, потому что нам нужно решит уравнение х^2=t и найти х.
Cуществует несколько решения этой задачи. Я предлагаю следующий. Рассмотрю весь набор не пусть чётных двузначных чисел как арифметическую прогрессию. Пусть (a)n - арифметическая прогрессия. Тогда a(1) = 11, a(2) = 13, d = a(2) - a(1) = 2.
Задача тогда сводится к тому. чтобы найти сумму n-первых членов данной арифметической прогрессии.
Всего двузначных нечётных чисел у нас 45. значит надо найти сумму 45 членов этой прогресии.
1) 3x(2x-1)=0 произведение двух множителей равно 0, если один из них или оба равны 0:
3х=0 или 2х-1=0
первый корень х=0
2х-1=0
2х=1
х=1/2 - второй корень.
2)25х^2=1 x^2=1/25 x=+- 5
3)4x^2+7x-2=0 вычислим дискриминант D=b^2-4ac
D=49+32=81 x=(-7+-9)/8 x первое =-2, х второе х=2/8=1/4
4)4x^2+20x+1=0
D=400-16=384 x=(-20+-VD):8 V - обозначение квадратного корня
5) 3x^2 + 2x + 1 =0 D=4-12=-8<0 уравнение решений не имеет, т.к дискриминант отрицательный
6) х^2 + 2,5x -3=0 D= 2,5^2-4*1*(-3)=18,25 x=( -2,5+- VD):2
7) x^4 -13x^2 +36=0 введем обозначение x^2= t, получим новое уравнение t^2 -13t +36=0 D= 169+144=313 К сожалению, корень квадратный из дискриминанта не извлекается. Надо проверить правильность условия, потому что нам нужно решит уравнение х^2=t и найти х.
ответ:2475
Пошаговое объяснение:
Cуществует несколько решения этой задачи. Я предлагаю следующий. Рассмотрю весь набор не пусть чётных двузначных чисел как арифметическую прогрессию. Пусть (a)n - арифметическая прогрессия. Тогда a(1) = 11, a(2) = 13, d = a(2) - a(1) = 2.
Задача тогда сводится к тому. чтобы найти сумму n-первых членов данной арифметической прогрессии.
Всего двузначных нечётных чисел у нас 45. значит надо найти сумму 45 членов этой прогресии.
S(45) =(( 2a(1) + 44d)/2) * 45 =( 2*11+ 88)/2) * 45 = 2475.