Представьте многочлен в виде произведения:
Объяснение: (A±B)² =A² ± 2AB+B² ; A²- B² = (A - B)(A+B) .
а) 4a²-4ab + b² — 4 =(2a -b)² - 2² =(2a -b - 2)(2a -b + 2) ;
б) 9-25x²+ 30 ху-9y² =3² - (5x -3y)² = (3 - 5x +3y)(3 + 5x -3y) ;
в) 36x²-25+60xy +25y² =( 6 x+5y)²-(5)² = (6 x+5y -5) (6 x+5y+5) ;
г) 16-24ab-16a²-9b²=(4)²-(4a+3b)²=(4-4a-3b)(4+4a+3b) ;
е) 25a²-20a+4-4b²=(5a -2)²-(2b)² =(5a -2-2b)(5a -2+2b) ;
ж) 16c²-9m²-42m-49=(4c)² - (3m +7)² = (4c -3m -7)(4c +3m +7) ;
з) 70x+25-36y²+49x² = (5 +7x)² -(6y)²=(5 +7x -6y)(5 +7x +6y) ;
!!
д) 9n²- 16m²+40m-25 = (3n)² - (4m - 5)² =(3n - 4m+5)(3n +4m+5)
В решении.
Объяснение:
Побудуйте графік функції y=x²-4x-5. Користуючись графіком, знайдіть:
1) Найменше значення функції;
2) Множину розв'язків нерівності x²-4x-5>0;
3) Проміжок, на якому функція y=x²-4x-5 зростає.
Постройте график функции y = x² - 4x - 5.
Пользуясь графиком, найдите:
1) Наименьшее значение функции;
2) Множество решений неравенства x²- 4x - 5 > 0;
3) Промежуток, на котором функция y = x² - 4x - 5 возрастает.
Придать значения х, подставить в уравнение, вычислить значения у, записать в таблицу, построить по точкам график.
График квадратичной функции, парабола со смещённым центром, ветви направлены вверх.
Таблица:
х -2 -1 0 1 2 3 4 5 6
у 7 0 -5 -8 -9 -8 -5 0 7
1) Наименьшее значение функции определяется ординатой её вершины. Согласно графика, наименьшее значение у = -9.
2) x²- 4x - 5 > 0;
Приравнять к нулю:
x²- 4x - 5 = 0
Уравнение квадратичной функции, ветви направлены вверх, пересекают ось Ох при х = -1 и х = 5.
Решение неравенства: х∈(-∞; -1)∪(5; +∞).
Неравенство строгое, скобки круглые.
3) Функция возрастает при х∈(2; +∞).
На промежутке от х = 2 до + бесконечности.
Представьте многочлен в виде произведения:
Объяснение: (A±B)² =A² ± 2AB+B² ; A²- B² = (A - B)(A+B) .
а) 4a²-4ab + b² — 4 =(2a -b)² - 2² =(2a -b - 2)(2a -b + 2) ;
б) 9-25x²+ 30 ху-9y² =3² - (5x -3y)² = (3 - 5x +3y)(3 + 5x -3y) ;
в) 36x²-25+60xy +25y² =( 6 x+5y)²-(5)² = (6 x+5y -5) (6 x+5y+5) ;
г) 16-24ab-16a²-9b²=(4)²-(4a+3b)²=(4-4a-3b)(4+4a+3b) ;
е) 25a²-20a+4-4b²=(5a -2)²-(2b)² =(5a -2-2b)(5a -2+2b) ;
ж) 16c²-9m²-42m-49=(4c)² - (3m +7)² = (4c -3m -7)(4c +3m +7) ;
з) 70x+25-36y²+49x² = (5 +7x)² -(6y)²=(5 +7x -6y)(5 +7x +6y) ;
!!
д) 9n²- 16m²+40m-25 = (3n)² - (4m - 5)² =(3n - 4m+5)(3n +4m+5)
В решении.
Объяснение:
Побудуйте графік функції y=x²-4x-5. Користуючись графіком, знайдіть:
1) Найменше значення функції;
2) Множину розв'язків нерівності x²-4x-5>0;
3) Проміжок, на якому функція y=x²-4x-5 зростає.
Постройте график функции y = x² - 4x - 5.
Пользуясь графиком, найдите:
1) Наименьшее значение функции;
2) Множество решений неравенства x²- 4x - 5 > 0;
3) Промежуток, на котором функция y = x² - 4x - 5 возрастает.
Придать значения х, подставить в уравнение, вычислить значения у, записать в таблицу, построить по точкам график.
График квадратичной функции, парабола со смещённым центром, ветви направлены вверх.
Таблица:
х -2 -1 0 1 2 3 4 5 6
у 7 0 -5 -8 -9 -8 -5 0 7
1) Наименьшее значение функции определяется ординатой её вершины. Согласно графика, наименьшее значение у = -9.
2) x²- 4x - 5 > 0;
Приравнять к нулю:
x²- 4x - 5 = 0
Уравнение квадратичной функции, ветви направлены вверх, пересекают ось Ох при х = -1 и х = 5.
Решение неравенства: х∈(-∞; -1)∪(5; +∞).
Неравенство строгое, скобки круглые.
3) Функция возрастает при х∈(2; +∞).
На промежутке от х = 2 до + бесконечности.