y = - x³ + 3x² + 4
Найдём производную :
y' = (- x³)' + 3(x²)' + 4' = - 3x² + 6x
Приравняем производную к нулю , найдём критические точки :
- 3x² + 6x = 0
- 3x(x - 2) = 0
x₁ = 0
x - 2 = 0 ⇒ x₂ = 2
Обе критические точки принадлежат заданному отрезку. Найдём значения функции в критических точках и на концах отрезка и сравним их .
y(- 3) = -(- 3)³ + 3 * (- 3)² + 4 = 27 + 27 + 4 = 58
y( 3) = - 3³ + 3 * 3² + 4 = - 27 + 27 + 4 = 4
y( 0) = - 0³ + 3 * 0² + 4 = 4
y(2) = - 2³ + 3 * 2² + 4 = - 8 + 12 + 4 = 8
Наименьшее значение функции равно 4, а наибольшее равно 58 .
х₁=-0,8 ,у₁=4,4 х₂=2 , у₂= -4
Объяснение:
х²+у²=20
3х+у=2 у=(2-3х)
х²+(2-3х)²=20
х²+4-12х+9х²=20
10х²-12х-16=0 :2
5х²-6х-8=0
корни ищем по формуле 6±√(36+160) /10
6-√(36+160) /10 6+√(36+160) /10
(6-14)/10 = - 0,8 ( 6+14)/10=2
у=(2-3х)
у=(2-3(-0,8))=4,4 у=(2-3*2)=-4
y = - x³ + 3x² + 4
Найдём производную :
y' = (- x³)' + 3(x²)' + 4' = - 3x² + 6x
Приравняем производную к нулю , найдём критические точки :
- 3x² + 6x = 0
- 3x(x - 2) = 0
x₁ = 0
x - 2 = 0 ⇒ x₂ = 2
Обе критические точки принадлежат заданному отрезку. Найдём значения функции в критических точках и на концах отрезка и сравним их .
y(- 3) = -(- 3)³ + 3 * (- 3)² + 4 = 27 + 27 + 4 = 58
y( 3) = - 3³ + 3 * 3² + 4 = - 27 + 27 + 4 = 4
y( 0) = - 0³ + 3 * 0² + 4 = 4
y(2) = - 2³ + 3 * 2² + 4 = - 8 + 12 + 4 = 8
Наименьшее значение функции равно 4, а наибольшее равно 58 .
х₁=-0,8 ,у₁=4,4 х₂=2 , у₂= -4
Объяснение:
х²+у²=20
3х+у=2 у=(2-3х)
х²+(2-3х)²=20
х²+4-12х+9х²=20
10х²-12х-16=0 :2
5х²-6х-8=0
корни ищем по формуле 6±√(36+160) /10
6-√(36+160) /10 6+√(36+160) /10
(6-14)/10 = - 0,8 ( 6+14)/10=2
у=(2-3х)
у=(2-3(-0,8))=4,4 у=(2-3*2)=-4
х₁=-0,8 ,у₁=4,4 х₂=2 , у₂= -4