В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Emro
Emro
18.01.2020 06:22 •  Алгебра

34 тому, кто решит. 1.найти область определения функции. f(x)=sqrt(1-0,5^0,5x-3) 2. выражение. 1+(a-(1/1-a)): a^2-a+1/a^2-2a+1

Показать ответ
Ответ:
Vikatop10
Vikatop10
15.09.2020 14:23
Если исходное задание выглядит как:

1) f(x) = \sqrt{ 1 - 0.5^{ 0.5x - 3 } } ;

2) ( 1 + a - \frac{1}{ 1 - a } ) : a^2 - \frac{ a + 1 }{ a^2 - 2a + 1 } ;

То, соответственно, будут решения:

1)

Исходное выражение для функции можно записать так:

f(x) = \sqrt{ 1 - 2^{ 3 - 0.5x } } ;

Главное требование: неотрицательность подкоренного выражения, т.е.:

1 - 2^{ 3 - 0.5x } \geq 0 ;

1 \geq 2^{ 3 - 0.5x } ;

3 - 0.5x \leq 0 ;

3 \leq 0.5x ;

x \geq 6 ;

 ответ: D(f) \in [ 6 ; +\infty ) .

2)

( 1 + a - \frac{1}{ 1 - a } ) : a^2 - \frac{ a + 1 }{ a^2 - 2a + 1 } =

= ( ( 1 + a )^{ ( 1 - a } - \frac{1}{ 1 - a } ) : a^2 - \frac{ a + 1 }{ ( a - 1 )^2 } = \frac{ ( 1 + a ) ( 1 - a ) - 1 }{ 1 - a } : a^2 - \frac{ a + 1 }{ ( a - 1 )^2 } =

= \frac{ 1 - a^2 - 1 }{ 1 - a } : a^2 - \frac{ a + 1 }{ ( a - 1 )^2 } = \frac{ - a^2 }{ 1 - a } : a^2 - \frac{ a + 1 }{ ( a - 1 )^2 } =

= \frac{ 1^{ ( a - 1 } }{ a - 1 } - \frac{ a + 1 }{ ( a - 1 )^2 } = \frac{ a - 1 - ( a + 1 ) }{ ( a - 1 )^2 } =

= - \frac{2}{ ( a - 1 )^2 } ;

*** Если же 2-ое исходное задание выглядит как: 1 + ( a - \frac{1}{ 1 - a } ) : a^2 - \frac{ a + 1 }{ a^2 - 2a + 1 } , то решение будет таким:

2)

1 + ( a - \frac{1}{ 1 - a } ) : a^2 - \frac{ a + 1 }{ a^2 - 2a + 1 } =

= 1 + ( \frac{ a ( 1 - a ) }{ 1 - a } - \frac{1}{ 1 - a } ) : a^2 - \frac{ a + 1 }{ ( a - 1 )^2 } = 1 + ( \frac{ a - a^2 }{ 1 - a } - \frac{1}{ 1 - a } ) : a^2 - \frac{ a + 1 }{ ( a - 1 )^2 } =

= 1 + \frac{ a - a^2 - 1 }{ ( 1 - a ) a^2 } - \frac{ a + 1 }{ ( 1 - a )^2 } = 1 + \frac{ a - a^2 - 1^{ ( 1-a } }{ ( 1 - a ) a^2 } - \frac{ a + 1^{ ( a^2 } }{ ( 1 - a )^2 } =

= 1 + \frac{ ( a - a^2 - 1 )( 1 - a ) - ( a + 1 ) a^2 }{ ( 1 - a )^2 a^2 } = 1 + \frac{ a - a^2 - 1 - a^2 + a^3 + a - a^3 - a^2 }{ ( 1 - a )^2 a^2 } =

= 1 + \frac{ 2a - 3a^2 - 1 }{ ( 1 - a )^2 a^2 } = 1 + \frac{ -2a^2 - ( a^2 - 2a + 1 ) }{ ( 1 - a )^2 a^2 } =

= 1 - \frac{ 2a^2 + ( a - 1 )^2 }{ ( 1 - a )^2 a^2 } = 1 - \frac{ 2a^2 }{ ( 1 - a )^2 a^2 } - \frac{ ( a - 1 )^2 }{ ( 1 - a )^2 a^2 } =

= 1 - \frac{2}{ ( 1 - a )^2 } - \frac{ 1 }{ a^2 } .
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота