1) D(x)=(-беск,+беск) , потому что икс можно взять любой 2) В знаменателе не может быть нуль, поэтому х-2 не может равняться нулю, т.е. х не равняется 2, т.е. D(x)=(-беск, 2) U (2,+беск), где U - знак объединения 3) под корнем не может быть отрицательное число+ в знаменателе не долджен быть нуль, значит подкоренное выражение должно быть положительным 6-3х>0, значит х<2 тогда D(x)=(-беск,2) 4) под корнем должно быть неотриц.число, т.е. х^2-3x-4 больше или равно нуля. (x+1)(x-4) больше или равно 0, значит x принадлежит (-беск, -1] и [4,+беск), т.е. D(x)=(-беск, -1] U [4,+беск)
Запишем эту сумму для произвольного числа слагаемых:
Вычислим значения S(k) для нескольких значений k:
Тогда можно предположить, что
Но это ещё надо доказать. Используем индукцию. Выше было показано, что равенство верно для первых 3 натуральных k. Докажем, что из справедливости равенства для k=n следует справедливость равенства для k=n+1, тогда равенство можно будет считать справедливым для всех натуральных k.
Итак, предположим, что справедливо равенство
Проверим, верно ли, что
Подставляем сюда предыдущее выражение:
Получили верное равенство. Теперь можно вычислить значение нашей суммы:
2) В знаменателе не может быть нуль, поэтому х-2 не может равняться нулю, т.е. х не равняется 2, т.е. D(x)=(-беск, 2) U (2,+беск), где U - знак объединения
3) под корнем не может быть отрицательное число+ в знаменателе не долджен быть нуль, значит подкоренное выражение должно быть положительным 6-3х>0, значит х<2
тогда D(x)=(-беск,2)
4) под корнем должно быть неотриц.число, т.е. х^2-3x-4 больше или равно нуля.
(x+1)(x-4) больше или равно 0, значит x принадлежит (-беск, -1] и [4,+беск), т.е. D(x)=(-беск, -1] U [4,+беск)
Запишем эту сумму для произвольного числа слагаемых:
Вычислим значения S(k) для нескольких значений k:
Тогда можно предположить, что
Но это ещё надо доказать. Используем индукцию. Выше было показано, что равенство верно для первых 3 натуральных k. Докажем, что из справедливости равенства для k=n следует справедливость равенства для k=n+1, тогда равенство можно будет считать справедливым для всех натуральных k.
Итак, предположим, что справедливо равенство
Проверим, верно ли, что
Подставляем сюда предыдущее выражение:
Получили верное равенство. Теперь можно вычислить значение нашей суммы: