С2+6с-40=0 Выделим в левой части полный квадрат. Для этого запишем выражение с2+6с в следующем виде: с2+6с=с2+2*3*с. В полученном выражении первое слагаемое - квадрат числа с, а второе - удвоенное произведение с на 3. По этому чтобы получить полный квадрат, нужно прибавить 3в квадрате, так как
с2 + 2• с • 3 + 3в квадрате = (с + 3)в квадрате. Преобразуем теперь левую часть уравнения с2 + 6х - 40 = 0,прибавляя к ней и вычитая 3 в квадрате. Имеем: с2 + 6с - 40 = с2 + 2• с • 3 + 3в квадрате - 3в квадрате - 40 = (с + 3)в квадрате - 9 - 40 = (с + 3)в квадрате - 49=0 Таким образом, данное уравнение можно записать так: (с + 3)в квадрате - 49 =0, (х + 3)в квадрате = 49. Следовательно, х + 3 - 7 = 0, х1 = -4, или х + 3 = -7, х2 = -10
Выделим в левой части полный квадрат.
Для этого запишем выражение с2+6с в следующем виде:
с2+6с=с2+2*3*с.
В полученном выражении первое слагаемое - квадрат числа с, а второе - удвоенное произведение с на 3. По этому чтобы получить полный квадрат, нужно прибавить 3в квадрате, так как
с2 + 2• с • 3 + 3в квадрате = (с + 3)в квадрате.
Преобразуем теперь левую часть уравнения
с2 + 6х - 40 = 0,прибавляя к ней и вычитая 3 в квадрате. Имеем:
с2 + 6с - 40 = с2 + 2• с • 3 + 3в квадрате - 3в квадрате - 40 = (с + 3)в квадрате - 9 - 40 = (с + 3)в квадрате - 49=0
Таким образом, данное уравнение можно записать так:
(с + 3)в квадрате - 49 =0,
(х + 3)в квадрате = 49.
Следовательно, х + 3 - 7 = 0, х1 = -4, или х + 3 = -7, х2 = -10
Находим первую производную функции:
y' = (x-4)² * (2*x-2)+(x-1)² * (2*x-8)
или
y' = 2(x-4)(x-1)(2*x-5)
Приравниваем ее к нулю:
2(x-4)(x-1)(2*x-5) = 0
x₁ = 1
x₂ = 5/2
x₃ = 4
Вычисляем значения функции
f(1) = 0
f(5/2) = 81/16
f(4) = 0
ответ: fmin = 0; fmax = 81/16
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 2(x-4)²+2(x-1)²+2(2*x-8)(2*x-2)
или
y'' = 12*x ²- 60*x + 66
Вычисляем:
y''(1) = 18>0 - значит точка x = 1 точка минимума функции.
y''(4) = 18>0 - значит точка x = 4 точка минимума функции.