Пусть функция f(x) непрерывна и определена на заданном отрезке [a; b] и имеет на нем некоторое (конечное) количество критических точек. Первым делом найдем производную функции f'(x) по х.
2
Приравниваем производную функции к нулю, чтобы определить критические точки функции. Не забываем определить точки, в которых производная не существует - они также являются критическими.
3
Из множества найденных критических точек выбираем те, которые принадлежат отрезку [a; b]. Вычисляем значения функции f(x) в этих точках и на концах отрезка.
4
Из множества найденных значений функции выбираем максимальное и минимальное значения. Это и есть искомые наибольшее и наименьшее значения функции на отрезке.
Пусть функция f(x) непрерывна и определена на заданном отрезке [a; b] и имеет на нем некоторое (конечное) количество критических точек. Первым делом найдем производную функции f'(x) по х.
2Приравниваем производную функции к нулю, чтобы определить критические точки функции. Не забываем определить точки, в которых производная не существует - они также являются критическими.
3Из множества найденных критических точек выбираем те, которые принадлежат отрезку [a; b]. Вычисляем значения функции f(x) в этих точках и на концах отрезка.
4Из множества найденных значений функции выбираем максимальное и минимальное значения. Это и есть искомые наибольшее и наименьшее значения функции на отрезке.
y=x³-6x²+9 на отрезке [ -1;5 ]
Область определения х-любое.
1)Промежутки возрастания и убывания.
у'=(х³-6х²+9)'=3х²-12х=3х(х-4)=3.
Критические точки х=0,х=-4 , при у'=0.
у'>0. , 3х(х-4)>0
(0)(4) , возрастает при х∈(-∞; 0) и ( 4;+∞) .
Т.к. функция определена и непрерывна при любом х, то можно включит концы отрезка х∈(-∞; 0] и [ 4;+∞)
Если у'<0 . то функция убывает .
Используя схему выше ⇒ х∈[ 0; 4] .
2)Экстремумы.
у' + - +
(0)(4)
у возр max убыв min возр
х=0 точка максимума , у(0)=y=0³-6*0²+9=9
х=4 точка минимума , у(4)=4³-6*4²+9=- 23