Логарифм единицы.loga1=0 Логарифм единицы равен нулю ( а>0, a≠1).Примеры. Вычислить:1) log71=0, 2) lg1=0, 3) ln1=0,так как 70=1. так как 100=1. так как е0=1.4) 52log51=52∙0=50=1. 5) 43lg1=43∙0=40=1. 6) 85ln1=85∙0=80=1. e3+5lg1=e3+5∙0=e3. 106ln1-2=106∙0-2=10-2=0,01. 35lg1+4=35∙0+4=34=81.Решить уравнение.1) log2(x+4)=log81; 2) log3(x-1)+5log181=log12(5∙0,2);log2(x+4)=0; log3(x-1)+5∙0=log121;x+4=20; log3(x-1)=0;x+4=1; x-1=30;x=1-4; x-1=1;x=-3. x=2.3) lg (2x+1) -7log21=ln1;lg (2x+1) -7∙0=0;lg (2x+1)=0;2x+1=100;2x+1=1;2x=0;x=0.11.4.4. Натуральный логарифмЛогарифм по основанию е (Неперово число е≈2,7) называют натуральным логарифмом.ln7=loge7, ln7 – натуральный логарифм числа 7.Примеры.Вычислить, используя определение логарифма.1) lne². По определению натуральный логарифм числа e² — это показатель степени, в которую нужно возвести число е, чтобы получить число е². Очевидно, что это число 2. lne²=2.2) ln (1/e). По определению натуральный логарифм числа 1/е — это показатель степени, в которую нужно возвести число е, чтобы получить 1/е. Очевидно, что это число -1, так как е-1=1/е.ln (1/e)=-1.3) lne3+lne4=3+4=7.4) lne-ln (1/e2)=1- (-2)=1+2=3.Вычислить, применив основное логарифмическое тождество: и формулу возведения степени в степень: (am)n=amn=(an)m .1) eln24=24.2) e2ln11=(eln11)2=112=121.3) e-ln20=(eln20)-1=20-1=1/20=0,05.4) (e4)ln5=(eln5)4=54=625.Упростить, применив основное логарифмическое тождество: формулу возведения степени в степень: (am)n=amn=(an)m ;формулу произведения степеней с одинаковыми основаниями: am∙an=am+n и формулу возведения в степень произведения: (a∙b)n=an∙bn.1) eln4+2=eln4∙e2=4∙e2=4e2.2) e1+ln3=e1∙eln3=e∙3=3e.3) (e4+ln5)2=(e4∙eln5)2=(e4∙5)2=e4∙2∙52=e8∙25=25e8.4) (eln2+3)4=(eln2∙e3)4=(2∙e3)4=24∙e3∙4=16e12.Упростить, применив основное логарифмическое тождество: формулу возведения степени в степень: (am)n=amn=(an)m ; формулу частного степеней с одинаковыми основаниями: am:an=am-n и формулу возведения в степень произведения: (a∙b)n=an∙bn.1) e2-ln3=e2:eln3=e2:3=e2/3.2) e1-ln5=e1:eln5=e:5=e/5=0,2e.3) (e5-ln10)3=(e5:eln10)3=(e5:10)3=(0,1e5)3=0,13∙e5∙3=0,001e15.4) (e3-ln2)4=(e3:eln2)4=(e3:2)4=(0,5e3)4=(0,5)4∙(e3)4=0,0625e12. 11.4.3. Десятичный логарифмЛогарифм по основанию 10 называют десятичным логарифмом и при написании опускают основание 10 и букву «о» в написании слова «log».lg7=log107, lg7 – десятичный логарифм числа 7.Примеры. Вычислить:lg10; lg100; lg1000; lg0,1; lg0,01; lg0,001.1) lg10=1, так как 101=10.2) lg100=2, так как102=100.3) lg1000=3, так как 103=1000.4) lg0,1=-1, так как 10-1=1/10=0,1.5) lg0,01=-2, так как 10-2=1/102=1/100=0,01.6) lg0,001=-3, так как 10-3=1/103=1/1000=0,001.Найти значение выражения: 10lg8; 10lg4+10lg3,5; 105lg2; 100lg3; 10lg5+2; 10lg60-1.Используем:основное логарифмическое тождество:(см. предыдущий урок 11.4.2. «Примеры на основное логарифмическое тождество»здесь)формулу произведения степеней с одинаковыми основаниями: am∙an=am+n,формулу частного степеней с одинаковыми основаниями: am:an=am— n1) 10lg8=82) 10lg4+10lg3,5=4+3,5=7,5.3) 105lg2=(10lg2)5=25=32.4) 100lg3=(102)lg3=(10lg3)2=32=9.5) 10lg5+2=10lg5∙102=5∙100=500.6) 10lg60-1=10lg60:101=60:10=6.Решить уравнение.1) lgx=10lg30-1.Упростим правую часть равенства как в предыдущих примерах.lgx=10lg30:101;lgx=30:10;lgx=3;x=103;x=1000.2) lg (x+3)=2.x+3=102;x+3=100;x=100-3;x=97.3) lg (x+5)=-1.x+5=10-1;x+5=0,1;x=0,1-5;x=-4,9.11.4.2. Примеры на основное логарифмическое тождество Это основное логарифмическое тождество.Это тождество следует из определения логарифма: так как логарифм – это показатель степени (n), то, возводя в эту степень число а, получим число b.Примеры.Вычислить: При решении используем формулу возведения степени в степень: (am)n=amn=(an)m и основное логарифмическое тождество.Найти значение выражения: Используем формулу произведения степеней с одинаковыми основаниями: am∙an=am+n и основное логарифмическое тождество.Найти значение выражения:Используем формулу частного степеней с одинаковыми основаниями: am:an=am— nи основное логарифмическое тождество.11.4.1. Определение логарифмаЛогарифмом числа b по основанию а (logab) называют показатель степени, в которую нужно возвести число а, чтобы получить число b.logab=n, если an=b. Примеры: 1) log28=3, т. к. 23=8;2) log5(1/25)=-2, т. к. 5-2=1/52=1/25; 3) log71=0, т. к. 70=1. Вычислить:1) log464+log525. Используем значения степеней: 43=64, 52=25 и определение логарифма.log464+log525=3+2=5.2) log2log381. Используем значения степеней: 34=81, 22=4 и определение логарифма.log2log381=log24=2.3) log5log9log2512. Используем значения степеней: 29=512, 50=1 и определение логарифма.log5log9log2512=log5log99=log51=0.Решить уравнение.1) log7x=2. По определению логарифма составим равенство: x=72, отсюда х=49.2) log3(x-5)=2.По определению логарифма:х-5=32;х-5=9;х=9+5;х=14.3) |log6(x+4)|=2.Освободимся от знака модуля.или log6(x+4) =2;x+4=62;x+4=36;x=36-4;x=32.
We learn the concept of a friend from elementary school when we are in school. At school, our teachers introduce us to the power and challenges of friendship. Children of this age retain the notion of a friend, become real friends in life, and consider their playmate as their friend. When he fights with his friends, he defends them. At school, she shared with her friend a piece of bread that her mother had put in her bag to eat when she was hungry. Yes, this was the case 10-15 years ago. And I was amazed to see a girl in the 4th grade look at her friend, who was playing a game, and say, "Go away, I'm not playing with you, your clothes are bad." That is, the child's consciousness is formed from an early age. What makes it so? Aren't they our future? If you are guilty, I would put my family first. Because he does what he sees in his family on the street. At the beginning of the meal, when parents and siblings ask each other for lessons, not about things that can be an example for each other, be friends with high-achieving students, do not be friends with a diaper, he wears bad clothes and does not study well. Yes, he wears bad clothes, he doesn't do well, but he probably has a high moral character, loyalty to a friend, which is not found in everyone. Why don't we consider it a human quality, a person may not say in vain that beauty is a cloth, but the cloth will end, but what about friendship, where is the friendship? This is how a child's outlook on life is shaped by the idea that he should make friends with people who are famous and well-dressed.
We learn the concept of a friend from elementary school when we are in school. At school, our teachers introduce us to the power and challenges of friendship. Children of this age retain the notion of a friend, become real friends in life, and consider their playmate as their friend. When he fights with his friends, he defends them. At school, she shared with her friend a piece of bread that her mother had put in her bag to eat when she was hungry. Yes, this was the case 10-15 years ago. And I was amazed to see a girl in the 4th grade look at her friend, who was playing a game, and say, "Go away, I'm not playing with you, your clothes are bad." That is, the child's consciousness is formed from an early age. What makes it so? Aren't they our future? If you are guilty, I would put my family first. Because he does what he sees in his family on the street. At the beginning of the meal, when parents and siblings ask each other for lessons, not about things that can be an example for each other, be friends with high-achieving students, do not be friends with a diaper, he wears bad clothes and does not study well. Yes, he wears bad clothes, he doesn't do well, but he probably has a high moral character, loyalty to a friend, which is not found in everyone. Why don't we consider it a human quality, a person may not say in vain that beauty is a cloth, but the cloth will end, but what about friendship, where is the friendship? This is how a child's outlook on life is shaped by the idea that he should make friends with people who are famous and well-dressed.