Дано уравнение: x=−7x+40x−10 Домножим обе части ур-ния на знаменатели: -10 + x получим: x(x−10)=1x−10(−7x+40)(x−10) x(x−10)=−7x+40 Перенесём правую часть уравнения в левую часть уравнения со знаком минус.
Уравнение превратится из x(x−10)=−7x+40 в x(x−10)+7x−40=0Раскроем выражение в уравнении x(x−10)+7x−40=0Получаем квадратное уравнение x2−3x−40=0 Это уравнение вида a*x^2 + b*x + c. Квадратное уравнение можно решить с дискриминанта. Корни квадратного уравнения: x1=D‾‾√−b2a x2=−D‾‾√−b2a где D = b^2 - 4*a*c - это дискриминант. Т.к. a=1 b=−3 c=−40 , то D = b^2 - 4 * a * c = (-3)^2 - 4 * (1) * (-40) = 169 Т.к. D > 0, то уравнение имеет два корня. x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) или x1=8 x2=−5
4x² - 12x + 9 = 0
D = b² - 4ac = 144 - 16×9 = 0
x = -b/2a
x = 12/8
x = 1,5
2) 5x² + 1 - 6x + 4x² = 0
9x² - 6x + 1 = 0
D = b² - 4ac = 36 - 36×1 = 0
x = -b/2a
x = 6/18
x = 1/3
3) x² + 2x - 3 = 0
D = b² -4ac = 4 - 4×(-3) = 26 = 4²
x1 = ( - 2 + 4) / 2 = 1
x2 = ( - 2 - 4) / 2 = - 3
4) x² + 3x -4 = 0
D = b²- 4ac = 9 - 4×(-4) = 25 = 5²
x1 = ( - 3 + 5) / 2 = 1
x2 = ( - 3 - 5) / 2 = - 4
5) x² - 5x + 4 = 0
D = b² - 4ac = 25 - 4×4 = 9 = 3²
x1 =( 5 + 3) / 2 = 4
x2 = ( 5 - 3) / 2 = 1
6) x² - 4x + 3 = 0
D = b - 4ac = 16 - 4×3 = 4 = 2²
x1 = ( 4 + 2) / 2 = 3
x2 = ( 4 - 2) / 2 = 1
7) 2x² + x - 3x - 4 = 0
2x² - 2x - 4 = 0
x² - x - 2 = 0
D = b² - 4ac = 1 - 4×(-2) = 9 = 3²
x1 = ( 1 + 3) / 2 = 2
x2 = ( 1 - 3) / 2 = - 1
8) 2x² - 3x - 4x + 3 = 0
2x² - 7x + 3 = 0
D = b²- 4ac = 49 - 8×3 = 25 = 5²
x1 = ( 7 + 5) / 4 = 3
x2 = ( 7 - 5)/ 4 = 0,5
x=−7x+40x−10
Домножим обе части ур-ния на знаменатели:
-10 + x
получим:
x(x−10)=1x−10(−7x+40)(x−10)
x(x−10)=−7x+40
Перенесём правую часть уравнения в
левую часть уравнения со знаком минус.
Уравнение превратится из
x(x−10)=−7x+40
в
x(x−10)+7x−40=0Раскроем выражение в уравнении
x(x−10)+7x−40=0Получаем квадратное уравнение
x2−3x−40=0
Это уравнение вида
a*x^2 + b*x + c.
Квадратное уравнение можно решить
с дискриминанта.
Корни квадратного уравнения:
x1=D‾‾√−b2a
x2=−D‾‾√−b2a
где D = b^2 - 4*a*c - это дискриминант.
Т.к.
a=1
b=−3
c=−40
, то
D = b^2 - 4 * a * c =
(-3)^2 - 4 * (1) * (-40) = 169
Т.к. D > 0, то уравнение имеет два корня.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
или
x1=8
x2=−5
ответ: x=-5