А) 3х -2у =8 ⇒ 2у = 3х -8 ⇒ у = 1,5 х -4 В этом уравнении угловой коэффициент к = 1,5. Любое уравнение , в котором к≠ 1,5 будет иметь единственное решение с данным (у = 2х +8; у = -2х +6 и т.д.) б) -5х +4у =3 ⇒ 4у = 3х -8 ⇒ у = 5 х +3 В этом уравнении угловой коэффициент к = 5. Любое уравнение , в котором к≠ 5 будет иметь единственное решение с данным (у = 2х +8; у = -2х +6 и т.д.) в) -3х -7 у =2 ⇒ 7у = -3х - 2 ⇒ у = -3/7 х - 2/7 В этом уравнении угловой коэффициент к = -3/7 Любое уравнение , в котором к≠ -3/7 будет иметь единственное решение с данным (у = 2х +8; у = -2х +6 и т.д.) г)5х + 6у = 9 ⇒ 6у = -5х - 9 ⇒ у = -5/6 х - 9/6 В этом уравнении угловой коэффициент к =-5/6. Любое уравнение , в котором к≠ -5/6 будет иметь единственное решение с данным (у = 2х +8; у = -2х +6 и т.д.)
Напомним, что неравенства называются равносильными, если у них совпадают множества решений.
Решим первое неравенство. ОДЗ: x≥2. Если x=2, неравенство превращается в 0>0, поэтому x=2 не входит в ответ. Если x>2, корень из x-2 больше 0, поэтому он не влияет на знак левой части и может быть отброшен. Получается неравенство x-a>0; x>a. Остается пересечь условия x>2 и x>a. Если a<2, решениями первого неравенства служат все x>2, что не совпадает с множеством решений второго неравенства. Если же a≥2, решениями первого неравенства служат все x>a, что совпадает с множеством решений второго неравенства.
В этом уравнении угловой коэффициент к = 1,5.
Любое уравнение , в котором к≠ 1,5 будет иметь единственное решение с данным
(у = 2х +8; у = -2х +6 и т.д.)
б) -5х +4у =3 ⇒ 4у = 3х -8 ⇒ у = 5 х +3
В этом уравнении угловой коэффициент к = 5.
Любое уравнение , в котором к≠ 5 будет иметь единственное решение с данным
(у = 2х +8; у = -2х +6 и т.д.)
в) -3х -7 у =2 ⇒ 7у = -3х - 2 ⇒ у = -3/7 х - 2/7
В этом уравнении угловой коэффициент к = -3/7
Любое уравнение , в котором к≠ -3/7 будет иметь единственное решение с данным
(у = 2х +8; у = -2х +6 и т.д.)
г)5х + 6у = 9 ⇒ 6у = -5х - 9 ⇒ у = -5/6 х - 9/6
В этом уравнении угловой коэффициент к =-5/6.
Любое уравнение , в котором к≠ -5/6 будет иметь единственное решение с данным
(у = 2х +8; у = -2х +6 и т.д.)
Напомним, что неравенства называются равносильными, если у них совпадают множества решений.
Решим первое неравенство. ОДЗ: x≥2. Если x=2, неравенство превращается в 0>0, поэтому x=2 не входит в ответ. Если x>2, корень из x-2 больше 0, поэтому он не влияет на знак левой части и может быть отброшен. Получается неравенство x-a>0; x>a. Остается пересечь условия x>2 и x>a. Если a<2, решениями первого неравенства служат все x>2, что не совпадает с множеством решений второго неравенства. Если же a≥2, решениями первого неравенства служат все x>a, что совпадает с множеством решений второго неравенства.
Вывод: неравенства равносильны при a≥2