4. Найдите координаты точек, отмеченных на координатной плос- кости (рис. 3). Какие из этих точек лежат: 1) на оси Ох; 2) на оси Оу; 3) в I четверти; 4) во II четверти; 5) в III четверти; 6) в IV четверти?
Делим показатель степени на число вариантов, тоесть на количество цифр, которыми может оканчиваться число в разных целых положительных степенях, далее смотрим по остатку, который останется (или не останется. если нацело) при делении.
Рассмотрим отдельно каждое слагаемое данной суммы.
54¹=54, оканчивается на 4 (первый вариант, если при делении, указанном выше, остаток получится 1)
54²= 2916, оканчивается на 6 (второй вариант, если при делении остаток получится 2 (нацело))
Вариантов 2.
35÷2= 17 (остаток 1), тогда нам подходит первый вариант, тоесть 54³⁵ будет оканчиваться на 4.
Рассмотрим 28²¹
28¹=28, оканчивается на 8 (первый вариант, если получится остаток 1)
28²=784, оканчивается на 4 (второй вариант, если выйдет остаток 2)
28³=21952, оканчивается на 2 (третий вариант, если получится остаток 3)
28⁴=614656, оканчивается на 6 (четвертый вариант, если получится остаток 4 (нацело))
Вариантов 4.
21÷4=5 (остаток 1), значит первый вариант, тоесть 28²¹ будет оканчиваться на 8.
2x−3≥7⇒2x≥10⇒x≥5 ответ: x ≥ 5 или x∈ [5;+∞) Из первого неравенства находим: x ∈ [5;+∞) или x ≥ 5 Решим второе неравенство системы x+4 ≥ 1⇒x ≥ −3 ответ: x ≥ −3 или x ∈ [−3;+∞) Из второго неравенства находим: x ∈ [−3;+∞) илиx ≥ − 3 Наносим найденные интервалы на числовую ось и находим их пересечение:
Ι Ι Ι Ι ΙΙ Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι
−3 Ι Ι Ι Ι ΙΙ Ι Ι Ι Ι Ι Ι Ι Ι Ι 5 Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι ответ: x∈ [5;+∞) или x ≥ 5 Там где палочки надо нарисовать координатную ось и отметить на ней точки -3 и 5
Объяснение:
Чтобы узнать какой цифрой оканчивается число:
Делим показатель степени на число вариантов, тоесть на количество цифр, которыми может оканчиваться число в разных целых положительных степенях, далее смотрим по остатку, который останется (или не останется. если нацело) при делении.
Рассмотрим отдельно каждое слагаемое данной суммы.
54¹=54, оканчивается на 4 (первый вариант, если при делении, указанном выше, остаток получится 1)
54²= 2916, оканчивается на 6 (второй вариант, если при делении остаток получится 2 (нацело))
Вариантов 2.
35÷2= 17 (остаток 1), тогда нам подходит первый вариант, тоесть 54³⁵ будет оканчиваться на 4.
Рассмотрим 28²¹
28¹=28, оканчивается на 8 (первый вариант, если получится остаток 1)
28²=784, оканчивается на 4 (второй вариант, если выйдет остаток 2)
28³=21952, оканчивается на 2 (третий вариант, если получится остаток 3)
28⁴=614656, оканчивается на 6 (четвертый вариант, если получится остаток 4 (нацело))
Вариантов 4.
21÷4=5 (остаток 1), значит первый вариант, тоесть 28²¹ будет оканчиваться на 8.
Сложим последние цифры чисел в степенях.
4+8=12, оканчивается на 2.
Значит 54³⁵ + 28²¹ оканчивается на 2
ответ: 2
ответ: x ≥ 5 или x∈ [5;+∞)
Из первого неравенства находим: x ∈ [5;+∞) или x ≥ 5
Решим второе неравенство системы
x+4 ≥ 1⇒x ≥ −3
ответ: x ≥ −3 или x ∈ [−3;+∞)
Из второго неравенства находим: x ∈ [−3;+∞) илиx ≥ − 3
Наносим найденные интервалы на числовую ось и находим их пересечение:
Ι Ι Ι Ι ΙΙ Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι
−3 Ι Ι Ι Ι ΙΙ Ι Ι Ι Ι Ι Ι Ι Ι Ι 5 Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι
ответ: x∈ [5;+∞) или x ≥ 5
Там где палочки надо нарисовать координатную ось и отметить на ней точки -3 и 5