Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
3)При решении первого уравнения поличилось два корня: 5 и -1,25. Возьмём первый корень, чтобы подставить его во второе уравнение и найти у: x=5 y=23-4*5=3
Таким образом, решением этой системы уравнений будет являться: (5;3).
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
(х+2)*у=21 - 1 уравнение
4х+у=23 - 2 уравнение
1) Выражаем из второго уравнения y и подставляем его в первое уравнение.
(x+2)*(23-4x)=21
y=23-4x
2) Решаем первое уравнение:
(х+2)*(23-4х)=21
23х-4х^2+46-8х-21=0
-4х^2+15х+25=0
4х^2-15х-25=0
D=(-15)^2-4*4*(-25)=225+400=625
x1=5, x2=-1,25
3)При решении первого уравнения поличилось два корня: 5 и -1,25. Возьмём первый корень, чтобы подставить его во второе уравнение и найти у:
x=5
y=23-4*5=3
Таким образом, решением этой системы уравнений будет являться: (5;3).