Скалярным произведением двух векторов на плоскости или в трехмерном пространстве в прямоугольной системе координат называется сумма произведений соответствующих координат векторов →a и →b. То есть для векторов →a = (ax, ay), →b = (bx, by) на плоскости в прямоугольной декартовой системе координат формула для вычисления скалярного произведения имеет вид: (→a, →b) = ax*bx + ay*by.
Объяснение:
Многие физические величины, например сила, перемещение материальной точки, скорость, характеризуется не только своими числовыми значениями, но и направлением в пространстве. Такие физические величины называются векторными величина и (или коротко вектороми)
Объяснение:
1.Представьте в виде степени выражение
А) х5∙х12∙х3 x5x12x3=x5+12+3=x20
Б) y13: y9 y13/y9=y13-9=y4 ( за задание )
2.Представьте в виде произведения степеней степени.
А) (ax)7 a7=x7
Б) (nm) 15n15=m15
( за задание )
3)Упростите выражение
А) 2 а-2 ∙3а4 2a-2*3a=2a (1-3a2)=46-3=4a9
Б) 24 а6: (6а-3)
( за задание )
4) Представьте в стандартном виде число.
А) 13000000000 13*10/9
Б) 0,000000015 15*10-9
( за задание )
5) Приведите в стандартный вид одночлены.
А) 5а2 ∙(-3) а3 в4 5a/2(-3)a/3b4-15=5b4
Б) 8ас5 ∙(-2а4) 8ac5*-2a4*16a5c5
( за задание )
Скалярным произведением двух векторов на плоскости или в трехмерном пространстве в прямоугольной системе координат называется сумма произведений соответствующих координат векторов →a и →b. То есть для векторов →a = (ax, ay), →b = (bx, by) на плоскости в прямоугольной декартовой системе координат формула для вычисления скалярного произведения имеет вид: (→a, →b) = ax*bx + ay*by.
Объяснение:
Многие физические величины, например сила, перемещение материальной точки, скорость, характеризуется не только своими числовыми значениями, но и направлением в пространстве. Такие физические величины называются векторными величина и (или коротко вектороми)
Если поставь как лучший !