Пусть функция f(x) непрерывна и определена на заданном отрезке [a; b] и имеет на нем некоторое (конечное) количество критических точек. Первым делом найдем производную функции f'(x) по х.
2
Приравниваем производную функции к нулю, чтобы определить критические точки функции. Не забываем определить точки, в которых производная не существует - они также являются критическими.
3
Из множества найденных критических точек выбираем те, которые принадлежат отрезку [a; b]. Вычисляем значения функции f(x) в этих точках и на концах отрезка.
4
Из множества найденных значений функции выбираем максимальное и минимальное значения. Это и есть искомые наибольшее и наименьшее значения функции на отрезке.
2) √35 чуть меньше чем 6. Подумай, почему. √120 - почти 11. В порядке возрастания (если нужно будет в обратном, поменяешь местами): 2, 3, √35, 6.5, √120, 13.
3) Трапеция прямоугольная, значит одна боковая сторона тоже образует прямые углы с основаниями, как у квадрата. Эта сторона будет меньше, так как расположена под прямым углом, следовательно равна 9. Большая - 15. Отсекаем прямоугольник, проводя высоту с другой стороны трапеции, остаётся треугольник со сторонами 9, 15 и одной неизвестной, которую находим по теореме Пифагора: 15^2 = x^2 + 9^2 15^2 - 9^2 = x^2 x^2 = 225 - 81 = 144; x = √144
Пусть функция f(x) непрерывна и определена на заданном отрезке [a; b] и имеет на нем некоторое (конечное) количество критических точек. Первым делом найдем производную функции f'(x) по х.
2Приравниваем производную функции к нулю, чтобы определить критические точки функции. Не забываем определить точки, в которых производная не существует - они также являются критическими.
3Из множества найденных критических точек выбираем те, которые принадлежат отрезку [a; b]. Вычисляем значения функции f(x) в этих точках и на концах отрезка.
4Из множества найденных значений функции выбираем максимальное и минимальное значения. Это и есть искомые наибольшее и наименьшее значения функции на отрезке.
1) 800 * 5% = 800 * 0.05 = 40 - скидка
800 - 40 = 760 - цена чайника
1000 - 760 = 240 - сдача.
2) √35 чуть меньше чем 6. Подумай, почему.
√120 - почти 11.
В порядке возрастания (если нужно будет в обратном, поменяешь местами): 2, 3, √35, 6.5, √120, 13.
3) Трапеция прямоугольная, значит одна боковая сторона тоже образует прямые углы с основаниями, как у квадрата. Эта сторона будет меньше, так как расположена под прямым углом, следовательно равна 9. Большая - 15. Отсекаем прямоугольник, проводя высоту с другой стороны трапеции, остаётся треугольник со сторонами 9, 15 и одной неизвестной, которую находим по теореме Пифагора:
15^2 = x^2 + 9^2
15^2 - 9^2 = x^2
x^2 = 225 - 81 = 144;
x = √144
Большее основание = меньшее основание + X.