4 Варiант 2 1. Обчислити алгебраїчне доповнення до елемента аз an a, aiз аз А-а, а аз аз аз2 a33 а) ауа, -аар ; б) (ауа– ауа, аз; в) ауа, — ауа, г) ауа,ауа, -
Пусть один из заводов выполняет некоторый заказ за х дней, тогда другой за (х+ 4) дня . Обозначим всю работу за 1 1/х часть работы выполняет первый за день, 1/(х+4) часть работы выполняет другой за день. За 24 дня первый выполнит 24·, за 24 дня второй выполнит 24· При этом объем работы в 5 раз больше. Составим уравнение:
24x+96+24x=5x²+20x 5x²-28x-96=0 D=(-28)²-4·5·(-96)=784+1920=2704=52² x=(28-52)/10=-2,4<0 или х=(28+52)/10=8 ответ. Первый завод выполнит работу за 8 дней, второй за 12 дней
опытаемся найти точки их пересечения, решив систему:
(x-2) 2 + (y-3) 2=16
(x-2) 2 + (y-2) 2=4
(x-2) 2=16 - (y-3) 2
(x-2) 2=4 - (y-2) 2,
отсюда 16 - (y-3) 2=4 - (y-2) 2
16-у2+6 у-9=4-у2+4 у-4 ещё
6 у-4 у=4-4+9-16 ещё
2 у=-7 найдём игрек
у=-3,5 и попробуем найти икс
(x-2) 2=4 - (-3,5-2) 2
(x-2) 2=4-30,25
(x-2) 2=-25,75, а квадрат не может быть отрицательным, следовательно, эти две окружности не пересекаются. центры окружностей - в точках (2; 3) и (2; 2) соответственно, то есть расстояние между центрами равно единице, а радиусы - 4 и 2, то есть вторая, меньшая, окружность расположена внутри первой.
ответ: малая окружность расположена внутри большой.
Обозначим всю работу за 1
1/х часть работы выполняет первый за день,
1/(х+4) часть работы выполняет другой за день.
За 24 дня первый выполнит 24·, за 24 дня второй выполнит 24·
При этом объем работы в 5 раз больше.
Составим уравнение:
24x+96+24x=5x²+20x
5x²-28x-96=0
D=(-28)²-4·5·(-96)=784+1920=2704=52²
x=(28-52)/10=-2,4<0 или х=(28+52)/10=8
ответ. Первый завод выполнит работу за 8 дней, второй за 12 дней
опытаемся найти точки их пересечения, решив систему:
(x-2) 2 + (y-3) 2=16
(x-2) 2 + (y-2) 2=4
(x-2) 2=16 - (y-3) 2
(x-2) 2=4 - (y-2) 2,
отсюда 16 - (y-3) 2=4 - (y-2) 2
16-у2+6 у-9=4-у2+4 у-4 ещё
6 у-4 у=4-4+9-16 ещё
2 у=-7 найдём игрек
у=-3,5 и попробуем найти икс
(x-2) 2=4 - (-3,5-2) 2
(x-2) 2=4-30,25
(x-2) 2=-25,75, а квадрат не может быть отрицательным, следовательно, эти две окружности не пересекаются. центры окружностей - в точках (2; 3) и (2; 2) соответственно, то есть расстояние между центрами равно единице, а радиусы - 4 и 2, то есть вторая, меньшая, окружность расположена внутри первой.
ответ: малая окружность расположена внутри большой.