423. В геометрической прогрессии (b) найдите: 1 а) b, если b = 5, q = 2 » В) q, если b = 7, b = 56; 1 б) b, если b, 32 : 4 = 2 г) b, если b = 2, Ь, 1 4
Объяснение: одно дело "выразить икс" и совсем другое - решить уравнение)) можно найти икс, постепенно выполняя обратные действия (не раскрывая скобок):
ответ: x = 14.
Объяснение: одно дело "выразить икс" и совсем другое - решить уравнение)) можно найти икс, постепенно выполняя обратные действия (не раскрывая скобок):
1) делимое = произведению делителя и частного: 1.2*(12_2/3) = (6/5)*(38/3) = 76/5
2) слагаемое = разности суммы и другого слагаемого: (76/5)-6.2 = (76/5)-(31/5) = 45/5 = 9
3) чтобы найти делитель (это самая внутренняя скобка), нужно делимое разделить на частное:
(3_9/16):9 = (57/16)*(1/9) = (19/16)*(1/3) = 19/48
4) уменьшаемое = разность + вычитаемое: (19/48)+(7/24) = (19+14)/48 = 33/48 = 11/16
5) 2.75:(11/16) = (11/4)*(16/11) = 4
получили: х:(2/7) - 45 = 4
x:(2/7) = 45+4=49
x = 49*(2/7) = 14
и всегда полезно делать проверку:
14:(2/7) = 14*7/2 = 7*7 = 49
49-45 = 4
(2.75)/4 = (11/4)*(1/4) = 11/16
(11/16)-(7/24) = (33-14)/48 = 19/48
(3_9/16):(19/48) = (57/16)*(48/19) = 3*3 = 9
9+6.2 = 15.2
(15.2):(12_2/3) = (76/5)*(3/38) = 6/5 = 12/10 = 1.2
а выразить икс гораздо сложнее...
log₂ sin(x/2) < - 1
ОДЗ: sinx/2 > 0
2πn < x/2 < π + 2πn, n ∈ Z
4πn < x < 2π + 4πn, n ∈ Z
sin(x/2) < 2⁻¹
sin(x/2) < 1/2
- π - arcsin(1/2) + 2πn < x/2 < arcsin(1/2) + 2πn, n ∈ Z
- π - π/6 + 2πn < x/2 < π/6 + 2πn, n ∈ Z
- 7π/6 + 2πn < x/2 < π/6 + 2πn, n ∈ Z
- 7π/3 + 4πn < x < π/3 + 4πn, n ∈ Z
2) log₁/₂ cos2x > 1
ОДЗ:
cos2x > 0
- arccos0 + 2πn < 2x < arccos0 + 2πn, n ∈ Z
- π/2 + 2πn < 2x < π/2 + 2πn, n ∈ Z
- π + 4πn < x < π + 4πn, n ∈ Z
так как 0 < 1/2 < 1, то
cos2x < 1/2
arccos(1/2) + 2πn < 2x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < 2x < 2π - π/3 + 2πn, n ∈ Z
π/6 + πn < x < 5π/6 + πn, n ∈ Z