Решение: Обозначим числа, которые нужно найти за х и у тогда согласно условию задачи составим систему уравнений: х-у=3 x^2+y^2=29 Из первого уравнения найдём х и подставим во второе уравнение: х=3+у (3+у)^2+y^2=29 9+6y+y^2+y^2=29 2y^2+6y+9-29=0 2y^2+6y-20=0 Чтобы превратить биквадратное уравнение в простое квадратное разделим на 2 y^2+3y-10=0 у1,2=-3/2+-sqrt(9/4+10)=-3/2+-sqrt49/4=-3/2+-7/2 у1=-3/2+7/2=4/2=2 у2=-3/2-7/2=-10/2=-5 Подставим данные найденных у и найдём х1 и х2 х1=3+2=5 х2=3-5=-2
ответ: Этими двумя числами могут быть: х1=5; у1=2 х2=-2; у2=-5
Сначала нужно найти в этой дроби общий множитель (если он конечно есть), чтобы сократить дробь. Один множитель уже виден, это у. Дальше смотрим по числам. Для этого каждое число разлаживаем на множители, чтобы найти общий множитель.
Начнём с минимального числа:
7 - нельзя разложить. Поэтому ищем при разложении чисел на 7.
Обозначим числа, которые нужно найти за х и у
тогда согласно условию задачи составим систему уравнений:
х-у=3
x^2+y^2=29
Из первого уравнения найдём х и подставим во второе уравнение:
х=3+у
(3+у)^2+y^2=29
9+6y+y^2+y^2=29
2y^2+6y+9-29=0
2y^2+6y-20=0 Чтобы превратить биквадратное уравнение в простое квадратное разделим на 2
y^2+3y-10=0
у1,2=-3/2+-sqrt(9/4+10)=-3/2+-sqrt49/4=-3/2+-7/2
у1=-3/2+7/2=4/2=2
у2=-3/2-7/2=-10/2=-5 Подставим данные найденных у и найдём х1 и х2
х1=3+2=5
х2=3-5=-2
ответ: Этими двумя числами могут быть: х1=5; у1=2
х2=-2; у2=-5
у/3
Объяснение:
(42ху^(2)-7у^(3))/(126ху-21у^(2))
Сначала нужно найти в этой дроби общий множитель (если он конечно есть), чтобы сократить дробь. Один множитель уже виден, это у. Дальше смотрим по числам. Для этого каждое число разлаживаем на множители, чтобы найти общий множитель.
Начнём с минимального числа:
7 - нельзя разложить. Поэтому ищем при разложении чисел на 7.
42=7×6
126=7×18
21=7×3
Вид полученной дроби:
(7•6•х•у•у-7•у•у^2)/(7•18•х•у-7•3•у•у)=7у(6ху-у^2)/7у(18х-3у)=(6ху-у^2)/(18х-3у)
Теперь в числителе ищем общий множитель:
6•х•у-у•у=у(6х-у)
В знаменателе ищем общий множитель:
3•6•х-3•у=3(6х-у)
Вид полученной дроби:
у(6х-у)/3(6х-у)=у/3.