5. а) рассчитайте значение х, с которой числовая последовательность : x+1; 4x-1; x^2+3 является арифметической прогрессией
b) решите уравнение 5+8+11+...(3ч+2)=670
с) рассчитайте х значение, с которой 3 числовых последавателньостей 36; 7*3^x; 2*3^x являются арифметической прогрессией
Объяснение:
1)Найди решение неравенства. Начерти его на оси координат.
x>4.
На числовой оси отметить ноль по центру, от нуля вправо отложить четыре клеточки, это будет точка х=4. Теперь от этой точки штриховать вправо, как бы до + бесконечности. Неравенство строгое, поэтому точка 4 должна обозначаться маленьким кружком, пустым внутри.
ответ: x∈(4;+∞]
2)Отобрази решение неравенства 1≤z на оси координат. Запиши ответ в виде интервала.
На числовой оси отметить ноль по центру, от нуля вправо отложить одну клеточку, это будет точка z=1, от этой точки влево штриховать, как бы до - бесконечности.
Интервал: z ∈(-∞, 1)
⦁ Длины сторон треугольника обозначены как a, b и c. Какие из неравенств неверны?
Неясное задание.
3) Известно, что b>c.
Выбери верные неравенства:
7,9−b>7,9−c
−7,9b<−7,9c
7,9b>7,9c
b+7,9>c+7,9
b−7,9>c−7,9
Выделены верные неравенства.
значение дроби не изменится если изменить знаки на противоположные:
▪у числителя и знаменателя дроби
▪у числителя и у всей дроби
▪у знаменателя и у всей дроби
2) функция обратной пропорциональности -это функция заданная формулой:
▪у = к/х
▪где х - независимая переменная, а
▪к - число отличное от нуля.
Графиком обратной пропорциональности является гиппербола.
▪Свойства функции обратной пропорциональности:
1) область определения о.п. состоит из всех значений х, кроме 0.
2) область значений о.п. - все значения у, кроме 0.
3) функция обратной пропорциональности не имеет 0.
4) при к>0 ветви гипперболы расположены в 1 и3 координатных четвертях.
5) при к<0 ветви гипперболы расположены в 2 и4 координатных четвертях.
3) ▪Действительными числами называют рациональные и иррациональные числа вместе . Множество действительных чисел образуют положительные, отрицательные, рациональные и иррациональные числа. Множество всех действительных чисел обозначают буквой R.
▪Рациональные числа - это все числа, которые могут быть представлены в виде обыкновенной дроби. Множество рациональных чисел обозначают буквой Q.
▪Иррациональные числа - это числа которые не являются рациональными числами, т.е. которые нельзя представить в виде дроби.
Иррациональное число может быть представленно ввиде бесконечной непериодической десятичной дроби.