В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
urukhaiz
urukhaiz
15.05.2021 20:58 •  Алгебра

5. Даны функции f(x) = 2х – 4 и g(x) =-x+ 2. Постройте на одной координатной плоскости графики функций f и g.
Определите, при каких значениях х:
2) f(x) < g(x).
1) f(x) > g(x);​

Показать ответ
Ответ:
DarthMalgus
DarthMalgus
29.04.2023 02:00

для определения среднего дохода налогоплательщиков города налоговой инспекцией была проведена проверка 250 жителей этого города, отобранных случайным образом. оценить вероятность того, что средний годовой доход жителей города отклонится от среднего арифметического    годовых доходов выбранных 250 жителей не более чем на 1000 руб., если известно, что среднее квадратичное отклонение годового дохода не превышает 2500 руб.

решение. согласно неравенству чебышева, которым можно пользоваться, поскольку все    , получаем

  .

теорема бернулли.  если в каждом из  п  независимых опытов вероятность  р  появления события  а  постоянна, то при достаточно большом числе испытаний вероятность того, что модуль отклонения относительной частоты появлений  а  в  п  опытах от  р  будет сколь угодно малым, как угодно близка к 1:

  .

замечание.  из теоремы бернулли не следует, что    . речь идет лишь о вероятности того, что разность относительной частоты и вероятности по модулю может стать сколь угодно малой. разница заключается в следующем: при обычной сходимости, рассматриваемой в анализе, для всех  п, начиная с некоторого значения, неравенство    выполняется всегда; в нашем случае могут найтись такие значения  п, при которых это неравенство неверно. этот вид сходимости называют сходимостью по вероятности.

0,0(0 оценок)
Ответ:
Nysha1111
Nysha1111
04.07.2021 18:52

Решение.

Арифметический подход к решению.

1. 3600 · 1,485 = 5346 (т. р.) — размер вклада к концу третьего года хранения.

2. 3600 · 1,1 · 1,1 · 1,1 = 4791,6 (т. р.) — размер вклада к концу третьего года хранения, зависящего от первоначально внесенной суммы.

3. 5346 − 4791,6 = 554,4 (т. р.) составляют ежегодные дополнительно внесенные вклады, включая начисленные процентные надбавки.

4. Пусть одну часть из суммы 554,4 т. р. составляет дополнительно внесенная сумма в третий

год хранения вклада вместе с процентной надбавкой, начисленной на ту же сумму. Тогда 1,1 часть

составит размер дополнительно внесенной суммы во второй год хранения вклада с учетом процентной надбавки, начисленной дважды (два года подряд).

5. Всего 1+1,1 = 2,1 (части).

6. 554,4 : 2.1 = 264 (т.р.) — доля одной части от 554, 4 т. р. вместе с ежегодной процентной

надбавкой.

7. 264 : 1,1 = 240 (т. р.) — сумма, ежегодно добавленная к вкладу

это для примера а так сам делай

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота