*50* №1. Если второе число больше первого на 4 и их произведение равно 60, то найти наименьшее положительное число этих чисел. (3) №2. На весь маршрут катер потратил 3 часа, пройдя 18 км по реке и 20 км против реки. Найдите скорость лодки по реке, если скорость реки 4 км/ч. (3) №3. Сумма квадратов трех последовательных целых чисел равна 869. Найдите эти числа. (4)
Если шифр пятизначный, то зафиксировав на втором месте цифру 5, а на последнем - цифру 0, получаем общее количество кодов для составления шифра замка: 5*1*5*5*1= 125 (Пояснение. Имеем 5 цифр. На первое место можно поставить любую из имеющихся пяти цифр, т.е. 7,8,5,1 и 0. Второе место "занято" цифрой 5, т.е. всего один вариант. На третье и на четвёртое место можно поставить любую из имеющихся пяти цифр (см. рассуждение выше). На последнем месте - единственный вариант - цифра ноль). Осталось только перемножить полученные варианты и вывести результат)
(Пояснение. Имеем 5 цифр. На первое место можно поставить любую из имеющихся пяти цифр, т.е. 7,8,5,1 и 0. Второе место "занято" цифрой 5, т.е. всего один вариант. На третье и на четвёртое место можно поставить любую из имеющихся пяти цифр (см. рассуждение выше). На последнем месте - единственный вариант - цифра ноль). Осталось только перемножить полученные варианты и вывести результат)
7(с – 2) - 10=7с-14
-2(х – 4) + 16(у + 2)=-2x+8+16y+32=-2x+40+16y
2а – (7 – 2а)=2a-7+2a=4a-7
-2а – 2(-а +7) + 14=-2a+2a-14=-14
9(2у – 1) -2(5 + 3у) – (у – 8)=18y-9-10-6y=12y-19
-2/3 x^3∙(-0,9x^2+1,5x-1/2)=-3\5x^5-x^4+1\3x^3
№3. Решите уравнение
1)0,4(х – 9) = 0,7 + 0,3(х + 2)
0.4x-3.6=0.7+0.3x+0.6
0.4x-3.6-0.7-0.3x-0.6=0
0.1x-4.9=0
0.1x=4.9
x=49
2)- 4(х – 2) + 5(2х + 3) = -1
-4x+8+10x+15=-1
6x=-1-23
6x=-24
x=4
3)-3∙(1/15+x)-5∙(1/10-3x)=2x.
-1\5-3x-1\2+15x=2x
10x=0,7
x=0.07
№4. Упростите выражение
x^2 (x^2-3x+1)-2x(x^3-3x^2+x)+x^4-3x^3+x^2 ) =x²(x²-3x+1)-2x²(x²-3x+1)+x²(x²-3x+1)=x²-3x+1=(11\3)²-3(11\3)+1=121\9-11+1=121-99+9\9=31\9