Решить систему уравнений методом алгебраического сложения:
5y-7x= -5
5y+x=2
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно первое уравнение умножить на -1:
-5у+7х=5
5y+x=2
Складываем уравнения:
-5у+5у+7х+х=5+2
8х=7
х=7/8
Теперь значение х подставляем в любое из двух уравнений системы и вычисляем у:
Сначала вырази синусы данных углов через синус углов из первой четверти: sin (–55°) = –sin 55°, потом sin 600° = sin (240° + 360°) = sin 240° = sin (180° + 60°) = =–sin 60°, sin 1295° = sin (215° + 3*360°) = sin 215° = sin (180° + 35°) = –sin 35°. И так как углы 55°, 60° и 35° принадлежат первой четверти, в которой большему углу соответствует больший синус, то sin 35° < sin 55° < sin 60°. Но тогда –sin 35° > –sin 55° > –sin 60°, а поэтому sin 1295° > sin (–55°) > sin 600°. ответ:sin 600°, sin (–55°), 1295°
Решение системы уравнений х=7/8
у=9/40
Объяснение:
Решить систему уравнений методом алгебраического сложения:
5y-7x= -5
5y+x=2
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно первое уравнение умножить на -1:
-5у+7х=5
5y+x=2
Складываем уравнения:
-5у+5у+7х+х=5+2
8х=7
х=7/8
Теперь значение х подставляем в любое из двух уравнений системы и вычисляем у:
5y+x=2
5у=2-х
5у=2-7/8
5у=1 и 1/8
у=(1 и 1/8)/5
у=9/40
Решение системы уравнений х=7/8
у=9/40
sin (–55°) = –sin 55°,
потом sin 600° = sin (240° + 360°) = sin 240° = sin (180° + 60°) =
=–sin 60°,
sin 1295° = sin (215° + 3*360°) = sin 215° = sin (180° + 35°) = –sin 35°.
И так как углы 55°, 60° и 35° принадлежат первой четверти, в которой большему углу соответствует больший синус,
то sin 35° < sin 55° < sin 60°.
Но тогда –sin 35° > –sin 55° > –sin 60°,
а поэтому sin 1295° > sin (–55°) > sin 600°.
ответ:sin 600°, sin (–55°), 1295°