Чтобы число делилось на 3, 4, 5 одновременно. число, оканчивающееся на 5, не может быть кратно 4, поэтому "5" вычеркиваем. 0 не вычеркиваем, так как числа, оканчивающиеся на 0 (как и на 5), кратны 5. число делится на 4, если последние две цифры этого числа образуют число, кратное 4. 20 кратно 4. но если мы ее вычеркнем, то нам придется вычеркнуть и 7, и 5, и 9(50, 70, 90не кратны 4), но уже получается что мы вычеркнули больше трех цифр, что недопустимо. поэтому последние цифры искомого числа 2 и 0. осталось нам воспользоваться признаком делимости на 3(сумма цифр кратного трём числа кратна 3). 8+6+9+5+7+2+0=37⇒ближайшие кратные 3 числа (<37) это 36, 33, 30, 27, 24, 21. 36 мы не можем получить, вычеркнув любые 2 цифры из 8, 7, 9, 5, 7. также не можем получить 33, 30, 27. а вот сумму 24 можем получить, вычеркнув 8 и 5. итак, искомое число 69720.
x - 3 = t
t² - 6t - 7 = 0
t₁ = - 1
t₂ = 7
x - 3 = - 1
x₁ = 2
x - 3 = 7
x₂ = 10
В2. Найдите значение b, если известно, что уравнение 3х² – bх + 5 = 0
имеет только одно решение.
Уравнение имеет один корень, если дискриминант равен нулю.
D = b² - 4*3*5
b² - 60 = 0
b² = 60
b₁ = - 2√15
b₂ = 2√15
В3. Найдите координаты точек пересечения прямой у = 3 - х и
окружности х2 + у2 = 9
Решение
у = 3 - х
х² + у² = 9
x² + (3 - x)² = 9
x² + 9 - 6x + x² = 9
2x² - 6x = 0
2x(x - 3) = 0
x₁ = 0
x₂ = 3
y₁ = 3 - 0 = 3
y₂ = 3 - 3 = 0
координаты точек пересечения прямой и
окружности: (0;3) (3;0)
ответ: (0;3) (3;0)