В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Maksimka087
Maksimka087
10.03.2023 15:10 •  Алгебра

6. Определить тригонометричесую фуккцию​


6. Определить тригонометричесую фуккцию​

Показать ответ
Ответ:
Denkuzo176
Denkuzo176
08.03.2020 20:58

x^3+3x+2\sqrt[3]{x-4} -34=0

Запишем уравнение в виде:

x^3+3x -34=-2\sqrt[3]{x-4}

Пусть левая и правая часть равны у. Тогда получим систему:

\begin{cases} y=x^3+3x -34\\y=-2\sqrt[3]{x-4}\end{cases}

Рассмотрим каждое уравнение как функцию.

y=x^3+3x -34 - возрастающая функция, так как это кубическая парабола с положительным старшим коэффициентом

y=-2\sqrt[3]{x-4} - убывающая функция, так как корень нечетной степени имеет сомножителем отрицательное число

Графически возрастающая и убывающая функция могут пересекаться не более чем в одной точке.

В данном случае, понимая, что и область определения и область значений каждой функции представляют собой все действительные числа можно сказать, что такое пересечение обязательно произойдет.

Таким образом, если найден некоторый корень этого уравнения, то других корней у уравнения нет.

Подберем корень. Удобно начать проверку с "красивых значений". Например, будем выбирать х так, чтобы под знаком корня получался куб некоторого целого числа.

Пусть \sqrt[3]{x-4} =\sqrt[3]{0}, то есть x=4. Проверим, является ли это число корнем:

4^3+3\cdot4+2\sqrt[3]{4-4} -34=64+12+2\cdot0-34=42\neq 0 - не корень

Пусть \sqrt[3]{x-4} =\sqrt[3]{1}, то есть x=5. Проверим, является ли это число корнем:

5^3+3\cdot5+2\sqrt[3]{5-4} -34=125+15+2\cdot1-34=108\neq 0 - не корень

Пусть \sqrt[3]{x-4} =\sqrt[3]{-1}, то есть x=3. Проверим, является ли это число корнем:

3^3+3\cdot3+2\sqrt[3]{3-4} -34=27+9+2\cdot(-1)-34=0 - корень

Таким образом, уравнение имеет единственный корень x=3

ответ: 3

0,0(0 оценок)
Ответ:
VaBaGaBa
VaBaGaBa
14.11.2022 14:59

В планиметрии все фигуры, которые рассматривались при доказательстве каждой теоремы или при решении задач, располагались на плоскости (на листе бумаги или на доске и т. д.). Таким образом, мы имели дело только с одной плоскостью, и все точки, линии, углы, вообще геометрические фигуры лежали только на ней.

В курсе стереометрии нам предстоит рассматривать такие случаи, когда не все точки, линии и углы данной или данных фигур будут располагаться на одной плоскости. Будем считать, например, поверхность стола моделью плоскости Р; возьмем куб и поставим его одной гранью на стол. Легко видеть, что в данном кубе:

1) имеются точки, ребра, углы, лежащие на данной плоскости Р (на столе);

2) имеются точки, которые находятся вне плоскости Р;

3) имеются ребра, пересекающие плоскость Р;

4) имеются углы, находящиеся вне плоскости Р;

5) имеются шесть граней, являющиеся моделями шести различных плоскостей.

Вывод. Плоскости могут вступать во взаимодействие с другими элементами фигур и друг с другом.

Отсюда вытекает необходимость изучать различные случаи комбинаций плоскостей между собой, комбинации плоскостей с линиями и другими геометрическими объектами. Это изучение является одной из задач курса стереометрии. В первую очередь надо выяснить основные свойства плоскостей по отношению друг к другу, к точкам и прямым.

Введем обозначения:

точки – А, В, С и т. д.

прямые – a, b, с и т. д. или (АВ, СD и т. д.)

плоскости – α, β, γ и т. д.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота