1) значение функции, если значение аргумента равно -2;
2) значение аргумента, при котором значение функции равно 13;
3) проходит ли график функции через точку А(-1; -7).
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
y = 2x − 5
Таблица:
х -1 0 1
у -7 -5 -3
1)Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:
х= -2
у=2*(-2)-5= -9 у= -9 при х= -2
2)Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:
у=13
13=2х-5
-2х= -5-13
-2х= -18
х=9 у=13 при х=9
3)Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
А(-1; -7)
y = 2x − 5
-7=2*(-1)-5
-7= -2-5
-7= -7, проходит.
2. Постройте график функции y = 2x+ 1. Пользуясь графиком, найдите:
1) значение функции, если значение аргумента равно 1;
2) значение аргумента, при котором значение функции равно -3.
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
y = 2x+ 1
Таблица:
х -1 0 1
у -1 1 3
а)согласно графика при х=1 у=3
б)согласно графика при у= -3 при х= -2
3. Не выполняя построения, найдите координаты точек пересечения графика функции
y = -2x+ 6 с осями координат.
а)График пересекает ось Оу при х=0.
у= -2*0+6=6
Координаты точки пересечения графиком оси Оу (6; 0)
б)График пересекает ось Ох при у=0.
0= -2х+6
2х=6
х=3
Координаты точки пересечения графиком оси Ох (3; 0)
4. При каком значении k график функции y = kx + 4 проходит через точку А(-3; -17)?
Нужно подставить известные значения х и у (координаты точки А) в уравнение и вычислить k:
1)Определение. Первообразной для функции f называется такая функция F, производная которой равна данной функции.
2)Если F1 и F2 – две первообразные для одной и той же функции f, то они отличаются на постоянное слагаемое. ... Функция, производная которой тождественно равна нулю, является постоянной. Итак, F1 – F2 = С. Таким образом, все первообразные для функции f получаются из одной из них прибавлением к ней произвольной постоянной.
3)совокупность первообразных функции и называется непределенным интегралом от функции . Совокупность всех первообразных функции называется неопределенным интегралом от и обозначается символическим выражением , которое читается "интеграл от эф от икс по дэ икс".
4) Знак интеграла (∫) используется для обозначения интеграла в математике.
5)Множество всех первообразных F(x)+C функции f(x) называется неопределенным интегралом функции f(x) и обозначается . Символ называется интегралом, f(x) называется подынтегральной функцией, f(x)dx называется подынтегральным выражением, x называется переменной интегрирования.
6)Подынтегральное выражение представляет собой дифференциал функции f(x). Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x), а множество ее первообразных F(x)+C.
7)Если – одна из первообразных некоторой функции , то совокупность всех первообразных этой функции можно представить в виде , где C – произвольная постоянная. Функция, имеющая первообразную в некотором промежутке, называется интегрируемой, а процедуру нахождения первообразной называют интегрированием этой функции.
8)Неопределенный интеграл его свойства. ... Множество всех первообразных некоторой функции f(x) называется неопределенным интегралом функции f(x) и обозначается как ∫f(x)dx. Таким образом, если F - некоторая частная первообразная, то справедливо выражение ∫f(x)dx=F(x)+C, где C - произвольная постоянная.
9)Метод интегрирования, при котором интеграл с тождественных преобразований подынтегральной функции и применения свойств интеграла приводится к одному или нескольким табличным интегралам, называется непосредственным интегрированием.
10)Геометрически определённый интеграл выражает площадь «криволинейной трапеции», ограниченной графиком функции[⇨].
11)Формула Ньютона-Лейбница - даёт соотношение между операциями взятия определенного интеграла и вычисления первообразной. Формула Ньютона-Лейбница - основная формула интегрального исчисления. Данная формула верна для любой функции f(x), непрерывной на отрезке [а, b], F - первообразная для f(x).
12)Криволинейная трапеция – плоская фигура, ограниченная графиком неотрицательной непрерывной функции у = f(x), определенной на отрезке [a; b], осью абсцисс и прямыми х = а, х = b – см. рис.
Объяснение:
Функция задана формулой y = 2x - 5. Определите:
1) значение функции, если значение аргумента равно -2;
2) значение аргумента, при котором значение функции равно 13;
3) проходит ли график функции через точку А(-1; -7).
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
y = 2x − 5
Таблица:
х -1 0 1
у -7 -5 -3
1)Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:
х= -2
у=2*(-2)-5= -9 у= -9 при х= -2
2)Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:
у=13
13=2х-5
-2х= -5-13
-2х= -18
х=9 у=13 при х=9
3)Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
А(-1; -7)
y = 2x − 5
-7=2*(-1)-5
-7= -2-5
-7= -7, проходит.
2. Постройте график функции y = 2x+ 1. Пользуясь графиком, найдите:
1) значение функции, если значение аргумента равно 1;
2) значение аргумента, при котором значение функции равно -3.
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
y = 2x+ 1
Таблица:
х -1 0 1
у -1 1 3
а)согласно графика при х=1 у=3
б)согласно графика при у= -3 при х= -2
3. Не выполняя построения, найдите координаты точек пересечения графика функции
y = -2x+ 6 с осями координат.
а)График пересекает ось Оу при х=0.
у= -2*0+6=6
Координаты точки пересечения графиком оси Оу (6; 0)
б)График пересекает ось Ох при у=0.
0= -2х+6
2х=6
х=3
Координаты точки пересечения графиком оси Ох (3; 0)
4. При каком значении k график функции y = kx + 4 проходит через точку А(-3; -17)?
Нужно подставить известные значения х и у (координаты точки А) в уравнение и вычислить k:
y = kx + 4
-17=k*(-3)+4
-17= -3k+4
3k=4+17
3k=21
k=7
1)Определение. Первообразной для функции f называется такая функция F, производная которой равна данной функции.
2)Если F1 и F2 – две первообразные для одной и той же функции f, то они отличаются на постоянное слагаемое. ... Функция, производная которой тождественно равна нулю, является постоянной. Итак, F1 – F2 = С. Таким образом, все первообразные для функции f получаются из одной из них прибавлением к ней произвольной постоянной.
3)совокупность первообразных функции и называется непределенным интегралом от функции . Совокупность всех первообразных функции называется неопределенным интегралом от и обозначается символическим выражением , которое читается "интеграл от эф от икс по дэ икс".
4) Знак интеграла (∫) используется для обозначения интеграла в математике.
5)Множество всех первообразных F(x)+C функции f(x) называется неопределенным интегралом функции f(x) и обозначается . Символ называется интегралом, f(x) называется подынтегральной функцией, f(x)dx называется подынтегральным выражением, x называется переменной интегрирования.
6)Подынтегральное выражение представляет собой дифференциал функции f(x). Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x), а множество ее первообразных F(x)+C.
7)Если – одна из первообразных некоторой функции , то совокупность всех первообразных этой функции можно представить в виде , где C – произвольная постоянная. Функция, имеющая первообразную в некотором промежутке, называется интегрируемой, а процедуру нахождения первообразной называют интегрированием этой функции.
8)Неопределенный интеграл его свойства. ... Множество всех первообразных некоторой функции f(x) называется неопределенным интегралом функции f(x) и обозначается как ∫f(x)dx. Таким образом, если F - некоторая частная первообразная, то справедливо выражение ∫f(x)dx=F(x)+C, где C - произвольная постоянная.
9)Метод интегрирования, при котором интеграл с тождественных преобразований подынтегральной функции и применения свойств интеграла приводится к одному или нескольким табличным интегралам, называется непосредственным интегрированием.
10)Геометрически определённый интеграл выражает площадь «криволинейной трапеции», ограниченной графиком функции[⇨].
11)Формула Ньютона-Лейбница - даёт соотношение между операциями взятия определенного интеграла и вычисления первообразной. Формула Ньютона-Лейбница - основная формула интегрального исчисления. Данная формула верна для любой функции f(x), непрерывной на отрезке [а, b], F - первообразная для f(x).
12)Криволинейная трапеция – плоская фигура, ограниченная графиком неотрицательной непрерывной функции у = f(x), определенной на отрезке [a; b], осью абсцисс и прямыми х = а, х = b – см. рис.