В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
блабла70
блабла70
29.06.2021 12:27 •  Алгебра

6. В школе технического творчества 47 учащихся посещают авиамодельный кружок или кружок робототехники.
Известно, что 20 учащихся посещают оба кружка. Дока-
жите, что в работе хотя бы одного из кружков принима-
ют участие не менее 34 учащихся.​

Показать ответ
Ответ:
Анастасияя12345
Анастасияя12345
13.01.2024 16:51
Добрый день, уважаемые ученики!

Давайте решим задачу вместе.

У нас есть два кружка: авиамодельный и кружок робототехники. По условию, в авиамодельный кружок ходит 47 учащихся, а в кружок робототехники ходит та же самая группа учащихся. Нам нужно доказать, что в работе хотя бы одного из кружков принимают участие не менее 34 учащихся.

Чтобы решить эту задачу, воспользуемся формулой для нахождения количества элементов в объединении двух множеств:

|A ∪ B| = |A| + |B| - |A ∩ B|,

где |A ∪ B| обозначает количество элементов в объединении множеств A и B, |A| обозначает количество элементов в множестве A, |B| обозначает количество элементов в множестве B, а |A ∩ B| обозначает количество элементов в пересечении множеств A и B.

Перед тем, как продолжить, поясню, что означают все эти символы. Множество - это набор элементов. В нашем случае множество A будет представлять собой учащихся авиамодельного кружка, а множество B - учащихся кружка робототехники. Пересечение множеств A и B (обозначается как A ∩ B) представляет собой учащихся, которые ходят и в авиамодельный кружок, и в кружок робототехники.

Из условия задачи известно, что 20 учащихся ходят и в авиамодельный кружок, и в кружок робототехники. То есть у нас есть пересечение множеств A и B.

Теперь запишем то, что нам известно:

|A| = 47 - количество учащихся в авиамодельном кружке,
|B| = 47 - количество учащихся в кружке робототехники,
|A ∩ B| = 20 - количество учащихся в пересечении кружков.

Подставим все значения в формулу:

|A ∪ B| = 47 + 47 - 20 = 74.

Таким образом, из формулы мы получили, что в объединении множеств A и B (т.е. в сумме учащихся авиамодельного кружка и учащихся кружка робототехники) находится 74 учащихся.

Теперь нужно доказать, что хотя бы один из кружков имеет не менее 34 учащихся. Давайте рассмотрим два случая:

1. Пусть количество учащихся в авиамодельном кружке |A| ≥ 34. Тогда мы доказали, что в работе авиамодельного кружка принимают участие не менее 34 учащихся.

2. Пусть количество учащихся в авиамодельном кружке |A| < 34. Тогда количество учащихся в кружке робототехники |B| ≥ 34 (так как 74 - |A| ≥ 34). Тогда мы доказали, что в работе кружка робототехники принимают участие не менее 34 учащихся.

Таким образом, независимо от того, какое количество учащихся посещает каждый из кружков, мы всегда можем доказать, что в работе хотя бы одного из кружков принимают участие не менее 34 учащихся.

Пожалуйста, дайте мне знать, если у вас остались вопросы по решению этой задачи.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота