В требовании указано: "Какую-нибудь первообразную функцию", мы же возьмём ту, которая даст нам более привлекательное отрицательное число, например: (1/3)*8 + 12 - 15; С = - 15; (В первообразных функциях всегда добавляется какая-то константа, потому что производная от константы = 0, поэтому говоря про вервообразную функцию, мы всегда говорим об Колекции функций, с разным варированием этой константе, её всегда пишут буквой С). Что бы найти результат, который бы удовлетворял нас выполним обычное уравнение:
F(2) = 1/3 * 8 + 3 * 4 - 15 = - 1/3
Вот эта функция и нам подходит, ты же можешь взять любое другое число, которое больше, но не меньше чем (-15), потому что указав число -14 мы получим 2/3, а нам не нужно положительный результат из требования...
3a1+6d=-12 разделим на 3 получим a1+2d=-4 a1=-4-2d
a1*a3*a5=80 a1*(а1+2d )* (a1+4d)=80 подставим вместо a1=-4-2d получим (- 4-2d)(-4-2d+2d)(-4-2d+4d) = (- 4-2d)(-4)(-4+2d)=
= (- 4-2d)(-4+2d) (-4) =((-4)²-(2d)²)(-4)=(16-4d²)(-4)=-64+16d²
-64+16d²=80
16d²=80+64
16d²=144
d²=144:16
d²=9 d1=3 d2=-3 найдем а1=-4-2d а1,1=-4-2*3=-4-6=-10
а1,2=-4-2*(-3)=-4+6=2
теперь найдем
а3=а1+2d -10+2*3=-10+6=-4 2+2(-3)=2-6=-4
a5=a1+4d -10+4*3=-10+12=2 2+4(-3)=2-12=-10
значит в 1 случае получаем прогрессию с d=3 -10;-7;-4;-1;2
при d=-3 получаем 2;-1;-4;-7;-10
сделаем проверку (-10)+(-4)+2=-14+2=-12 (-10)*(-4)*2=80
2+(-4)+(-10)=2+(-14)=-12 2*(-4)*(-10)=80
ответ: а1=-10; а3=-4; а5=2 или а1=2; а3=-4 а5=-10
первообразная:
F(x) = 1/3 * x^3 + 3x^2 + C;
F(2) = 1/3 * 8 + 3 * 4 + C;
В требовании указано: "Какую-нибудь первообразную функцию", мы же возьмём ту, которая даст нам более привлекательное отрицательное число, например: (1/3)*8 + 12 - 15;
С = - 15; (В первообразных функциях всегда добавляется какая-то константа, потому что производная от константы = 0, поэтому говоря про вервообразную функцию, мы всегда говорим об Колекции функций, с разным варированием этой константе, её всегда пишут буквой С).
Что бы найти результат, который бы удовлетворял нас выполним обычное уравнение:
F(2) = 1/3 * 8 + 3 * 4 - 15 = - 1/3
Вот эта функция и нам подходит, ты же можешь взять любое другое число, которое больше, но не меньше чем (-15), потому что указав число -14 мы получим 2/3, а нам не нужно положительный результат из требования...