50 км/ч.
Объяснение:
300 : 3 = 100 (км) - проехал поезд до остановки.
300 - 100 = 200 (км) - проехал поезд после остановки.
Пусть х км/ч - скорость поезда до остановки,
тогда (х - 10) км/ч - скорость поезда после остановки.
Составим уравнение:
100(x - 10) + 200х + х(х - 10) =8х(х - 10)
100х - 1000 + 200х + х² - 10х = 8х² - 80х
8х² - х² + 10х - 80х - 100х - 200х + 1000 = 0
7х² - 370х + 1000 = 0
D = (- 370)² - 4 * 7 * 1000 = 136900 - 28000 = 108900 = 330²
Второй корень не подходит, так как имея такую скорость, поезд не смог бы её сбросить на 10 км/ч.
Значит, скорость поезда до остановки была 50 км/ч.
(Х + 1) (x - 1) / (Х - 2)(x - 1) = (x² - 1) / (Х - 2)(x - 1) = (x² - 1) / (x² - 3x + 2)
2) (Х - 3) (x - 3)/ (Х + 3)(x - 3) = (x - 3)² / (x² - 9)
Х*(x + 3) / (Х - 3)(x + 3) = x*(x + 3) / (x² - 9)
3) (3 + Х)(x - 3) / (Х - 5)(x - 3) = (x² - 9) / (Х - 5)(x - 3) = (x² - 9) / (x² - 8x + 15)
Х*(x - 5) / (Х - 3)(x - 5) = Х*(x - 5) / (x² - 8x + 15)
4) (Х + 1)(x + 2) /x*(x² - 4) = (x² + 3x + 2) /x*(x² - 4)
x (4 + Х) / x( x² - 4)
50 км/ч.
Объяснение:
300 : 3 = 100 (км) - проехал поезд до остановки.
300 - 100 = 200 (км) - проехал поезд после остановки.
Пусть х км/ч - скорость поезда до остановки,
тогда (х - 10) км/ч - скорость поезда после остановки.
Составим уравнение:
100(x - 10) + 200х + х(х - 10) =8х(х - 10)
100х - 1000 + 200х + х² - 10х = 8х² - 80х
8х² - х² + 10х - 80х - 100х - 200х + 1000 = 0
7х² - 370х + 1000 = 0
D = (- 370)² - 4 * 7 * 1000 = 136900 - 28000 = 108900 = 330²
Второй корень не подходит, так как имея такую скорость, поезд не смог бы её сбросить на 10 км/ч.
Значит, скорость поезда до остановки была 50 км/ч.