По формуле касательной y=f'(x0)(x-x0) + f(x0)=f'(x0)*x +f(x0)-f'(xo)*xo х0- неизвестная константа точка касания тогда число -3 будет равно f'(xo) надеюсь понятно тк f(x0)-f'(xo)*x0 тоже константа не помноженная на x найдем производную 10x^2+23x+c=0 тк c-константа то получим f'(x)=20x+23 f'(x0)=20x0 + 23=-3 20x0=-26 xo=-13/10 подставим теперь зная что f(x0)-f'(xo)*xo=-8 f(xo)-3*-13/10=8 f(xo)=119/10 теперь подставим х0 в уравнение и приравняем 169/10-23*13/10+с=119/10 откуда 169-23*13+10с=119 10c=119-169+299 x=249/10=24,9
Смотри. Здесь использую формулы сокращённого умножения 1)5(a-b)²-(a+b)(b-a) =Смотри, 5+7 = 12, 7+5 = 12, значить когда ты имеешь право менять местачт числа при ДОДАВАНИИ.. значит: = 5(a-b)²-(b+a)(b-a) = теперь в конце есть формула a²-b² только в разложеном виде. собираем её = 5(a-b)²-a²+b²= далее раскладываем первую формулу (a-b)²= a²-2ab+b² = 5(a²-2ab+b²)-a²+b²= умножаю 5 на всё что есть в скобках = 5a²-10ab+5b²-a²+b² = 4a²-10ab+6b² 2)a(a-b)²-(b-a)³= раскрываю скобки по формулах = a(a²-2ab+b²)-(b³-3b²a+3ba²-a³) = умножаю первые скобки на а, а вторые раскрываю и меняю знак на противоположный a³-2a²b+b²a-b³+3b²a-3ba²+a³=2a³-5a²b+4b²a-b³
1)5(a-b)²-(a+b)(b-a) =Смотри, 5+7 = 12, 7+5 = 12, значить когда ты имеешь право менять местачт числа при ДОДАВАНИИ..
значит:
= 5(a-b)²-(b+a)(b-a) = теперь в конце есть формула a²-b² только в разложеном виде. собираем её
= 5(a-b)²-a²+b²= далее раскладываем первую формулу (a-b)²= a²-2ab+b²
= 5(a²-2ab+b²)-a²+b²= умножаю 5 на всё что есть в скобках
= 5a²-10ab+5b²-a²+b² = 4a²-10ab+6b²
2)a(a-b)²-(b-a)³= раскрываю скобки по формулах
= a(a²-2ab+b²)-(b³-3b²a+3ba²-a³) = умножаю первые скобки на а, а вторые раскрываю и меняю знак на противоположный
a³-2a²b+b²a-b³+3b²a-3ba²+a³=2a³-5a²b+4b²a-b³