На первом витке окружности расставлены точки 0; π/2; π; 3π/2 Точка (-√2/2; √2/2) во второй четверти, Ей соответствует значение 3π/4 На втором витке окружности расставлены точки 2π; 5π/2; 3π; 7π/2 Точка (-√2/2; √2/2) во второй четверти, Ей соответствует значение 3π/4 + 2π=11π/4 На третьем витке окружности расставлены точки 4π; 9π/2; 5π; 11π/2 Точка (-√2/2; √2/2) во второй четверти, Ей соответствует значение 11π/4+2π=19π/4 На [0; 5π] точке М соответствуют значения 3π/4 ; 11π/4 ; 19π/4 На [π/2 ; 9π/2] точке М соответствуют значения 3π/4 ; 11π/4
На единичной окружности имеется точка абсцисса которой π/4≈3/4<1 Отмечаем эту точку на оси ох и проводим прямую || оси оу до пересечения с окружностью Это точки А и В Отметим точку с ординатой π/4 на оси оу и проводим прямую || оси ох до пересечения с окружностью. Получим точки К и Е
√17-√26 сравним с -1 Пусть √17-√26 > -1 √17 + 1 > √26 17 + 2√17 + 1 >26 2√17>8 4·17 > 64 - верно Значит точка существует Ей соответствуют на ед окружности точки Р и Т
1)2((8+x)+x)=20
8+2x=20:2
8+2х=10
2х=10-8
2х=2
х=2:2
х=1-ширина
8+х=8+1=9 - длина
2)2х+х=441
3х=441
х=441:3
х=147-второе число
3х=294-первое число
3)х+у+х-у=140+14
2х=154
х=154:2
х=77-первое число
77+у=140
у=140-77
у=63-второе число
4) х+(х+1)+(х+2)=201
3х+3=201
3х=201-3
3х=198
х= 198:3
х=66
х+1=67
х+2=68
Это числа 66,67 и 68
Точка (-√2/2; √2/2) во второй четверти,
Ей соответствует значение 3π/4
На втором витке окружности расставлены точки 2π; 5π/2; 3π; 7π/2
Точка (-√2/2; √2/2) во второй четверти,
Ей соответствует значение 3π/4 + 2π=11π/4
На третьем витке окружности расставлены точки 4π; 9π/2; 5π; 11π/2
Точка (-√2/2; √2/2) во второй четверти,
Ей соответствует значение
11π/4+2π=19π/4
На [0; 5π] точке М соответствуют значения 3π/4 ; 11π/4 ; 19π/4
На [π/2 ; 9π/2] точке М соответствуют значения 3π/4 ; 11π/4
На единичной окружности имеется точка абсцисса которой π/4≈3/4<1
Отмечаем эту точку на оси ох и проводим прямую || оси оу до пересечения с окружностью
Это точки А и В
Отметим точку с ординатой π/4 на оси оу и проводим прямую || оси ох до пересечения с окружностью. Получим точки К и Е
√17-√26 сравним с -1
Пусть
√17-√26 > -1
√17 + 1 > √26
17 + 2√17 + 1 >26
2√17>8
4·17 > 64 - верно
Значит точка существует
Ей соответствуют на ед окружности точки Р и Т