Дана квадратичная функция h(t)=30t−5t2, графиком которой является парабола, ветви которой направлены вниз. Функция своего наибольшего значения достигает в вершине параболы. Чтобы определить максимальную высоту, надо найти координату Y вершины (в данном задании это h). Чтобы определить время, в течение которого мяч летит вверх, надо найти координату X вершины (в данном задании это t). Все время полета мяча будет в 2 раза больше. x0=t0=(−b)2a=−302⋅−5=3 секунды.
Время, через которое мяч упадет на землю, равно 2⋅t0=2⋅3=6 секунд. y0=h0= 30⋅3−5⋅32=45 метров.
1. Мяч взлетит на высоту 45 метров. 2. Мяч упадет на землю через 6 секунд
Пусть AA, BB -- непустые подмножества RR такие, что
∀a∈A,b∈B → a≤b.∀a∈A,b∈B → a≤b.
Тогда существует c∈Rc∈R такое, что
∀a∈A,b∈B → a≤c≤b.
НЕКОТОРЫЕ СЛЕДСТВИЯ ИЗ АКСИОМ МНОЖЕСТВА ДЕЙСТВИТЕЛЬНЫХ ЧИСЕЛ
Число 0 единственно.
Для любого aa число (−a)(−a), противоположное к aa единственно.
Для любых a,b∈Ra,b∈R существует единственное xx такое, что a+x=ba+x=b (при этом x=b+(−a)x=b+(−a); это число называется разностью между bb и aa и обозначается b−ab−a).
Чтобы определить максимальную высоту, надо найти координату Y вершины (в данном задании это h).
Чтобы определить время, в течение которого мяч летит вверх, надо найти координату X вершины (в данном задании это t). Все время полета мяча будет в 2 раза больше.
x0=t0=(−b)2a=−302⋅−5=3 секунды.
Время, через которое мяч упадет на землю, равно 2⋅t0=2⋅3=6 секунд.
y0=h0= 30⋅3−5⋅32=45 метров.
1. Мяч взлетит на высоту 45 метров.
2. Мяч упадет на землю через 6 секунд
АКСИОМА НЕПРЕРЫВНОСТИ (ПРИНЦИП ДЕДЕКИНДА)
Пусть AA, BB -- непустые подмножества RR такие, что
∀a∈A,b∈B → a≤b.∀a∈A,b∈B → a≤b.
Тогда существует c∈Rc∈R такое, что
∀a∈A,b∈B → a≤c≤b.
НЕКОТОРЫЕ СЛЕДСТВИЯ ИЗ АКСИОМ МНОЖЕСТВА ДЕЙСТВИТЕЛЬНЫХ ЧИСЕЛ
Число 0 единственно.
Для любого aa число (−a)(−a), противоположное к aa единственно.
Для любых a,b∈Ra,b∈R существует единственное xx такое, что a+x=ba+x=b (при этом x=b+(−a)x=b+(−a); это число называется разностью между bb и aa и обозначается b−ab−a).
Число 1 единственно.