Можно выделить полные квадраты: (9a^2+6ab+b^2)+(b^2+18b+81)+ (a^2-6a+9)+1926=(3a+b)^2 +(b+9)^2 +(a-3)^2+1926 Заметим ,что если возможно,что все 3 квадрата могут быть равны 0. То минимум ,когда все квадраты равны нулю. Тк в этом случае все квадраты будут принимать свое минимальное значение. Ведь квадрат неотрицателен. Проверим: b+9=0 ,b=-9 ,a-3=0 , a=3. Подставим в 1 квадрат: 3a+b=3*3-9=0 . Тут нам несказанно повезло,ведь на практике подобный случай довольно редок! Таким образом наименьшее значение будет при a=3, b=-9. Это наименьшее значение равно 1926 соответственно. В более общем случае эта задача решается через экстремум 2 переменных,что не является школьной программой.
а) 5,5
б) 12,35
в) 11,5
г) 12,15
Объяснение:
a) Амплитуда (размах) — разность между наибольшим и наименьшим элементами
б) Медиана — полусумма средних элементов упорядоченной последовательности.
Данная последовательность состоит из 10 элементов (чётное количество), следовательно, средние элементы — пятый и шестой.
в) Мода — элемент, имеющий наибольшую частоту, т. е. 11,5 см
(встречается в таблице два раза).
г) Чтобы вычислить среднее арифметическое, необходимо сумму всех чисел разделить на их количество (на 10).