В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
haikyuu24
haikyuu24
18.04.2023 20:53 •  Алгебра

9 Дана функция, заданной формулой у= - 1/3 x+1

1). Построить график функции.

2) Указать координаты точек пересечения графика функции с осями координат.

3)Принадлежат ли графику функции точки А(-3,-2), В(-6,3), С(6, -1)?

Разложите на множители:

а): 16m^2 – n^6;

б) 15a^3b- 3a^2b^2

Показать ответ
Ответ:
Mished
Mished
09.06.2020 13:54
Решение:
Обозначим запланированный пошив спортивных курток в день за (х), тогда за 12 дней было запланировано сшить спортивных курток: 12*х
Однако,
ателье ежедневно шило (х+1) курток, а за 10 дней (12дн.-2д.=10дн.) было сшито:
10*(х+1) и это на 10 курток за эти 10 дней сшито больше, что можно записать уравнением:
12*х-10*(х+1)=10
12х-10х-10=10
2х=10+10
2х=20
х=20:2
х=10 (курток -это количество было запланировано шить ежедневно)
Фактически ателье сшило курток:
10*(10+1)=10*11=110 (курток)

ответ: Ателье пошило 110 спортивных курток
0,0(0 оценок)
Ответ:
Lakensssss
Lakensssss
31.10.2021 05:49

Перенесем все влево и вынесем за скобки x:

x^3-6x^2-ax=0,\\\\x(x^2-6x-a)=0

Из этого следует, что уравнение всегда имеет хотя бы одно решение - x=0. Задача сводится к тому, чтобы посмотреть, при каких a будут корни у уравнения x^2-6x-a=0 и сколько их будет. Для этого достаточно рассмотреть 2 ситуации.

1) проверим, при каком значении a корнем уравнения x^2-6x-a=0 будет x=0. Подставляем ноль в уравнение: 0-0-a=0\Rightarrow a=0. При a=0 имеем:

x(x^2-6x)=0, \\\\x\cdot x(x-6)=0;\\\\x^2(x-6)=0

Делаем вывод, что при a=0 уравнение имеет два корня: x=0, x=6.

2) при a\neq 0 уравнение x^2-6x-a=0 не может иметь корень x=0. Уравнение - квадратное. Сразу ищем дискриминант: D=(-6)^2-4\cdot1\cdot(-a)=36+4a.

Здесь рассматриваем 3 случая:

2.1. Если D,  то уравнение x^2-6x-a=0 решений не имеет - следовательно, вторая скобка не будет давать новых решений и у исходного уравнения оно будет единственным.

2.2. Если D=0\Rightarrow 36+4a=0\Rightarrow a=-9, то подставляя вместо параметра -9 в итоге получаем: x^2-6x+9=0, (x-3)^2=0\Rightarrow x=3. Итого "вылез" еще один корень - значит, у исходного уравнения их будет два.

2.3. Если D0\Rightarrow 36+4a0\Rightarrow a-9, то уравнение x^2-6x-a=0 имеет два решения - следовательно, исходное будет иметь уже 3 решения. Заметим, что в это неравенство входит a=0, а мы его проверяли отдельно - при a=0 корней будет 2, а не 3, поэтому из неравенства его нужно исключить.

ОТВЕТ: При a уравнение имеет единственный корень; при a=-9 и a=0 уравнение имеет два различных корня; при a\in(-9; 0)\cup(0; +\infty) уравнение имеет три различных корня.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота