1) Заметим, что, если в кучке осталось 2 спички, никому из игроков не выгодно брать из нее спичку, т.к. следующим ходом противник заберет оставшуюся спичку и победит. Тогда, если есть кучка с 1 спичкой, забираем спичку, если же есть спички числом спичек, большим 2, берем спичку из любой.
Если во всех кучках осталось по 2 спички, то было совершено 99*101=9999 ходов, а значит последнюю спичку в данный момент забрал начинающий. Тогда на 10000 ход второй вынужден забрать спичку из кучки с 2 спичками. А дальше игра оканчивается ничьей.
А значит ответ нет.
2) Заметим, что искомая сумма .
И правда. Пусть - сумма всех комбинаций по 1 ... по k элементов. Тогда
Т.к. числа отрицательны, то
Если хотя бы одно из , вся сумма равна -1.
В остальных случаях - всегда отрицательное. Но произведение 10 целых отрицательных чисел положительно, причем не меньше 1. Противоречие с тем, что .
ну надо найти решение когда отрицательны уравнения
х²-10х+13 < 0 (1)
х²+2х-4 < 0 (2)
(1) х²-10х+13 < 0
D= 10² - 4*13 = 100 - 52 = 48
x12 = (10 +- √48)/2 = 5 +- 2√3
(5 - 2√3) (5 + 2√3)
2√3 ≈ 3.46 5 - 2√3 ≈ 1.54 5 + 2√3 ≈ 8.46
x∈ (5 - 2√3, 5 + 2√3)
(2) х²+2х-4 < 0
D = 4 + 16 = 20
x12 = (-2 +- √20)/2 = -1 +- 2√5
(-1 - 2√5) (-1 + 2√5)
x ∈ (-1 - 2√5, -1 + 2√5)
2√5 ≈ 4.47 -1 - 2√5 ≈ -5,57 -1 + 2√5 ≈ 3.37
если нужны корни каждого неравенства то написаны
если общее для двоих одновременно , то пересекаем ответы
x∈ (5 - 2√3, 5 + 2√3) и x ∈ (-1 - 2√5, -1 + 2√5)
и получаем x∈ (5 - 2√3, -1 + 2√5) например х= 2
1) Заметим, что, если в кучке осталось 2 спички, никому из игроков не выгодно брать из нее спичку, т.к. следующим ходом противник заберет оставшуюся спичку и победит. Тогда, если есть кучка с 1 спичкой, забираем спичку, если же есть спички числом спичек, большим 2, берем спичку из любой.
Если во всех кучках осталось по 2 спички, то было совершено 99*101=9999 ходов, а значит последнюю спичку в данный момент забрал начинающий. Тогда на 10000 ход второй вынужден забрать спичку из кучки с 2 спичками. А дальше игра оканчивается ничьей.
А значит ответ нет.
2) Заметим, что искомая сумма .
И правда. Пусть - сумма всех комбинаций по 1 ... по k элементов. Тогда
Т.к. числа отрицательны, то
Если хотя бы одно из , вся сумма равна -1.
В остальных случаях - всегда отрицательное. Но произведение 10 целых отрицательных чисел положительно, причем не меньше 1. Противоречие с тем, что .
А тогда сумма могла равняться только -1