А. -8 і 8. Б. -8. В. 8. Г. 32. 7. Установіть відповідність між виразо якщо x = 4. А 14 1 2 2 Б 12 8x1 x+2 x-4 4x? х' - 3х (х-3) х 12x 1 (9x' - 4) 3х - 2 . в 10 3 г 16
Теплоход проходит расстояние между двумя пристанями по течению реки за 3 ч, а против течения (между теми же пристанями) – за 3,8 ч. Собственная скорость теплохода b км/ч, а скорость течения реки n км/ч.
а) Найти скорость теплохода по течению реки и против течения реки.
по течению: (b+n) км/час; против течения (b-n) км/час.
б) Найти расстояние, которое теплоход проплыл по течению реки.
3*(b+n) км;
в) Найти расстояние, которое теплоход проплыл против течения реки.
3,8*(b-n) км;
г) Сравнить расстояние (>, <, =), пройденное теплоходом по течению реки и против течения реки.
1.Пусть f(x)=ax²+bx+c. Ясно, что a-b+c=f(-1). По условию f(-1)<0, и многочлен ax^2+bx+c не имеет действительных корней. Но это значит что парабола ax²+bx+c полностью находится ниже оси x и любое значение функции f(x) будет отрицательным. Значит f(0)=c<0 ответ: с<0. 2. y=(x^2+x)(x^2+9x+20) y'=(2x+1)(x^2+9x+20)+(2x+9)(x^2+x)=2(2x+5)(x^2+5x+2) 2(2x+5)(x^2+5x+2)=0 x=-5/2 x=-5/2+√17/2 x=-5/2-√17/2 Производная меняет знак с - на + в точках x=-5/2+√17/2, x=-5/2-√17/2 значит в этих точках функция имеет минимум. Подставляя значения в функцию находим y=-4. ответ: -4.
В решении.
Объяснение:
Составьте математическую модель данной ситуации.
Теплоход проходит расстояние между двумя пристанями по течению реки за 3 ч, а против течения (между теми же пристанями) – за 3,8 ч. Собственная скорость теплохода b км/ч, а скорость течения реки n км/ч.
а) Найти скорость теплохода по течению реки и против течения реки.
по течению: (b+n) км/час; против течения (b-n) км/час.
б) Найти расстояние, которое теплоход проплыл по течению реки.
3*(b+n) км;
в) Найти расстояние, которое теплоход проплыл против течения реки.
3,8*(b-n) км;
г) Сравнить расстояние (>, <, =), пройденное теплоходом по течению реки и против течения реки.
3*(b+n) км = 3,8*(b-n) км.
Ясно, что a-b+c=f(-1). По условию f(-1)<0, и многочлен ax^2+bx+c не имеет действительных корней. Но это значит что парабола ax²+bx+c полностью находится ниже оси x и любое значение функции f(x) будет отрицательным.
Значит f(0)=c<0
ответ: с<0.
2. y=(x^2+x)(x^2+9x+20)
y'=(2x+1)(x^2+9x+20)+(2x+9)(x^2+x)=2(2x+5)(x^2+5x+2)
2(2x+5)(x^2+5x+2)=0
x=-5/2
x=-5/2+√17/2
x=-5/2-√17/2
Производная меняет знак с - на + в точках x=-5/2+√17/2, x=-5/2-√17/2 значит в этих точках функция имеет минимум. Подставляя значения в функцию находим y=-4. ответ: -4.