Если вы хотите решить уравнение, в котором переменная (х) имеет степень больше единицы, то записывать его следует так: 2x^3+3x^2+4=0 Систему линейных уравнений следует записывать через запятую: x+y=10, x-y=4 Уравнения из системы следует записать через запятую, например x^3 + 2x^2 + 5 = 0, 3х=0 Для решения уравнения с параметром следует воспользоваться оператором solve. Например: 2x3+ax+6=0 решаем относительно x, тогда запись будет такой solve 2x^3+ax+6=0 for x Если вы хотите решить неравенство, то его следует записать так: | |4x-2|-7<3 Запись тригонометрических уравнений выполняется так: sin x + cos x = 1
Систему линейных уравнений следует записывать через запятую: x+y=10, x-y=4
Уравнения из системы следует записать через запятую, например x^3 + 2x^2 + 5 = 0, 3х=0
Для решения уравнения с параметром следует воспользоваться оператором solve. Например: 2x3+ax+6=0 решаем относительно x, тогда запись будет такой solve 2x^3+ax+6=0 for x
Если вы хотите решить неравенство, то его следует записать так: | |4x-2|-7<3
Запись тригонометрических уравнений выполняется так: sin x + cos x = 1
х км – расстояние от дома до остановки
х/6 час – время от дома до остановки
54 мин = 54/60 ч = 9/10 ч
9/10 – х/6 = (27 – 5х)/30 час – время на троллейбусе от остановки до школы.
30 * (27-5х)/30 = (27 – 5х) км – расстояние от остановки до школы
На обратном пути расстояние (27 – 5х) он проехал со скоростью 36 км/ч.
(27 – 5х)/36 час – время от школы до остановки
А расстояние х км со скоростью 5 км/ч.
х/5 ч – время от остановки до дома
56 мин = 56/60 ч = 14/15 ч
Уравнение:
(27 – 5х)/36 + х/5 = 14/15
Умножим уравнение на 180 и получим:
5(27 – 5х) + 36х = 168
135 – 25х + 36х = 168
11х = 33
х = 33 : 11
х = 3 км - расстояние от дома до остановки
27 – 5 * 3 = 27 – 15 = 12 км – расстояние от остановки до школы
3 + 12 = 15 км - всё расстояниеответ: 3 км