а) y=(x-2) в 4 степени
1)Четная
2)Определена на всей области определения
3)Вершина в точке (2;0) 4)Ветви направлены вверх. 5)До x<2 убывает. 6)При x>4 возрастает.
б)0.5sinx+2
1) Определена на всей области определения
2) Нечетная
3) Периодическая
4) Возрастает и убывает
5) Знакопостоянна на промежутках
6) Непрерывна
7) График называеться синусойдой
в)y=0.5cosx+2
1)Определена на всей области определения
2)Четная
3)Периодическая
4)Область значений отрезок [ 1,5; 2,5]; 5)Убывает на промежутках [KeZ; п+2пk] и возрастает на промежутках [п+2пk;KeZ]
Г)y=-(x+2)в 4 степени.
2) Вершина в точке (-2;0)
3)Возростает (-бесконечности;-2);
4)Убывает (-2;+бесконечности);
5)Ветви направлены в низ
6) Область значений (0;-бесконечности)
7) Ость оссимптот: x=-2
8)Наибольшее значение при y=0; x=-2
9) Наименьшего значения не существует
3x^ + 2x - 5 = 0
Найдем дискриминант квадратного уравнения:
D = b^ - 4ac = 22 - 4·3·(-5) = 4 + 60 = 64
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = -2 - √64 2·3 = (-2 - 8)÷6 =-10/6 = -5/3 ≈ -1.6666666666666667
x2 = -2 + √64 2·3 = (-2 + 8)÷6 =6/6 = 1
2уравнение:
5x^+3x−2=0
Коэффициенты уравнения:
a=5, b=3, c=−2
Вычислим дискриминант:
D=b2−4ac=32−4·5·(−2)=9+40=49
(D>0), следовательно это квадратное уравнение имеет 2 различных вещественных корня:
Вычислим корни:
x(1,2)=−b±√D÷2a
x1=−b+√D÷2a=−3+7÷2·5=4/10=0,4
x2=−b−√D÷2a=−3−7÷2·5=−10/10=−1
5x2+3x−2=(x−0,4)(x+1)=0
ответ: x1=0,4;x2=−1
а) y=(x-2) в 4 степени
1)Четная
2)Определена на всей области определения
3)Вершина в точке (2;0)
4)Ветви направлены вверх.
5)До x<2 убывает.
6)При x>4 возрастает.
б)0.5sinx+2
1) Определена на всей области определения
2) Нечетная
3) Периодическая
4) Возрастает и убывает
5) Знакопостоянна на промежутках
6) Непрерывна
7) График называеться синусойдой
в)y=0.5cosx+2
1)Определена на всей области определения
2)Четная
3)Периодическая
4)Область значений отрезок [ 1,5; 2,5];
5)Убывает на промежутках [KeZ; п+2пk] и возрастает на промежутках [п+2пk;KeZ]
Г)y=-(x+2)в 4 степени.
1)Определена на всей области определения
2) Вершина в точке (-2;0)
3)Возростает (-бесконечности;-2);
4)Убывает (-2;+бесконечности);
5)Ветви направлены в низ
6) Область значений (0;-бесконечности)
7) Ость оссимптот: x=-2
8)Наибольшее значение при y=0; x=-2
9) Наименьшего значения не существует