к сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.
общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:
task/29453615
Вычислить : sin( arcsin 8/15 - arcsin 8/17 )
α = arcsin 8 / 15 ; β = arcsin 8/17
sin(arcsin8/15)*cos(arcsin8/17) - cos(arcsin8/15) *sin(arcsin8/17)=
* * *cosα= √(1 -(8/15)² ) =√(1 -64/225 ) =√(161/225 ) =(√161) /15 * * *
* * *cosβ= √(1 -(8/17)² ) =√(1 -64/289 ) =√(225/289 ) = 15 /17 * * *
sin(arcsin8/15)*cos(arccos(15 /17) - cos(arccos(√161) /15) *sin(arcsin8/17) =
8/15*15 /17 - (√161) /15 ) * 8/17 = (8/17)*(1 - (√161) /15 ).
ответ: ниа.
объяснение:
к сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.
общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:
сos px = a; sin gx = b; tg kx = c; ctg tx = d.