А) Температура 0°-тан бастап бір қалыпты көтерілді.
ә) Температура 20°-тан 0°-қа дейін төмендеді.
б) Температура 0°-ты ұстап тұрып, кенет көтерілді.
температура
температура
температура
t (сағ) 0°
t (сағ)
0°
t (сағ)
Ауа райын бақылау
қазіргі кездегі және
болашақтағы
ғалымдар үшін
маңызды.
Из первого неравенства находим:
x
∈
R
или
x
- любое число.
Решим второе неравенство системы.
Решение второго неравенства системы
x
2
⩽
36
⇒
x
2
−
36
⩽
0
Решим квадратное уравнение
x
2
−
36
=
0
Решение квадратного уравнения
x
2
−
36
=
0
x
2
=
−
c
a
⇒
x
1
,
2
=
±
√
−
c
a
x
1
,
2
=
±
√
36
1
=
±
√
36
=
±
6
x
1
,
2
=
±
6
Корни квадратного уравнения:
x
1
=
−
6
;
x
2
=
6
Наносим найденные точки на числовую ось и вычисляем знаки на каждом интервале:
x
−
6
6
x
∈
[
−
6
;
6
]
или
−
6
⩽
x
⩽
6
Из второго неравенства находим:
x
∈
[
−
6
;
6
]
или
−
6
⩽
x
⩽
6
Т.к. первое неравенство верно при любом
x
, то решение данной системы неравенств равно решению второго неравенства.
x
∈
[
−
6
;
6
]
или
−
6
⩽
x
⩽
6
6 и -21
Объяснение:
Перевод: Найти наибольшее и наименьшее значения функции:
y = 2·x³-3·x²-12·x-1
на промежутке [-2; 3].
Решение. Применим алгоритм нахождения наибольшее и наименьшее значения функции на интервале.
1) Находим производную от функции:
y'=(2·x³-3·x²-12·x-1)' =2·(x³)'-3·(x²)'-12·(x)'-(1)' =2·3·x²-3·2·x-12·1-0=6·x²-6·x-12.
2) Находим критические точки функции принадлежащие промежутке [-2; 3]:
y'=0 ⇔ 6·x²-6·x-12=0 ⇔ x²-x-2=0 ⇔ x²-1-x-1=0 ⇔ (x-1)·(x+1)-(x+1)=0 ⇔
⇔ (x-1-1)·(x+1)=0 ⇔ (x-2)·(x+1)=0 ⇒ x₁=2∈[-2; 3], x₂= -1∈[-2; 3].
3) Вычислим значение функции в критических точках из промежутка и на границах промежутка:
y(-2) = 2·(-2)³-3·(-2)²-12·(-2)-1 = -16-12+24-1 = -5;
y(-1) = 2·(-1)³-3·(-1)²-12·(-1)-1 = -2-3+12-1 = 6;
y(2) = 2·2³-3·2²-12·2-1 = 16-12-24-1 = -21;
y(3) = 2·3³-3·3²-12·3-1 = 54-27-36-1 = -10.
4) Выбираем наибольшее и наименьшее значения функции среди значений из пункта 3:
наибольшее - это число 6;
наименьшее - это число -21.