1) Раскроем скобки в левой и правой части неравенства:
х²-10х+3х-30<х²-2х-5х+10
х²-7х-30<х²-7х+10
2) Так как любой член неравенства можно переносить из одной части неравенства в другую, меняя при этом знак на противоположный, то все члены правой части неравенство перенесём в левую часть, изменив их знаки на противоположные:
х²-7х-30- х²+7х-10<0.
3) Таким образом, мы так преобразовали первоначальное неравенство, что теперь надо доказать, что левая часть преобразованного неравенства меньше нуля.
х² и (- х²) - сокращаются;
(-7х) и (+7х) - сокращаются;
а оставшееся число
(-40) <0.
Получив в итоге число (-40), которое меньше 0, мы таким образом доказали, что действительно:
Решение с формулы n-члена арифметической прогрессии:
a₁=16
d=-1.1
a(n)=0 - остановка
a(n)=a₁+d(n-1)
16+(-1.1)(n-1)=0
16-1.1n+1.1=0
-1.1n=-17.1
n=15.(54)
Поскольку n - всегда целое число, значение 0 не является членом данной арифметической прогрессии. Тем не менее, выяснилось, что для полного торможения (остановки), потребуется 15.(54) сек.
См. Объяснение
Объяснение:
1) Раскроем скобки в левой и правой части неравенства:
х²-10х+3х-30<х²-2х-5х+10
х²-7х-30<х²-7х+10
2) Так как любой член неравенства можно переносить из одной части неравенства в другую, меняя при этом знак на противоположный, то все члены правой части неравенство перенесём в левую часть, изменив их знаки на противоположные:
х²-7х-30- х²+7х-10<0.
3) Таким образом, мы так преобразовали первоначальное неравенство, что теперь надо доказать, что левая часть преобразованного неравенства меньше нуля.
х² и (- х²) - сокращаются;
(-7х) и (+7х) - сокращаются;
а оставшееся число
(-40) <0.
Получив в итоге число (-40), которое меньше 0, мы таким образом доказали, что действительно:
(х+3)(х - 10) < (х-5)(х - 2).
Дано:
Торможение:
1-я сек. - 16 м
каждая следующая сек. на 1.1 м меньше
Найти: ? полных сек. для остановки
Решение с формулы n-члена арифметической прогрессии:
a₁=16
d=-1.1
a(n)=0 - остановка
a(n)=a₁+d(n-1)
16+(-1.1)(n-1)=0
16-1.1n+1.1=0
-1.1n=-17.1
n=15.(54)
Поскольку n - всегда целое число, значение 0 не является членом данной арифметической прогрессии. Тем не менее, выяснилось, что для полного торможения (остановки), потребуется 15.(54) сек.
Округляем до целых секунд: 15.(54)≈16 сек.
ответ: полных 16 сек. потребуется